Реферат: Жидкостное химическое травление
С точки зрения химии процесс травления можно представить схемой
твердая фаза+травитель®продукты;
при этом к твердой фазе относят кремний, его оксиды и нитриды и многие металлы. Для межсоединений внутри кристалла обычно применяют Al и его сплавы с Si и Cu, причем основным материалом для первого уровня металлизации является Al (табл. 1). Слои оксидов кремния можно выращивать термически, наносить химическим способом или распылением, можно также легировать их фосфором или бором. Металлы используются в виде чистых или пассивированных пленок, сплавов, многослойных структур и интерметаллидов. Поскольку кремний существует в виде монокристаллических или поликристаллических пленок, его структура, как и структура других кристаллических материалов, имеет и ближний и дальний порядок. Поскольку травление переводит упорядоченные структуры в неупорядоченные, термодинамические соображения о поведении свободной энергии DF системы должны учитывать изменения как энтропии +DS, так и энтальпии DН (теплоты растворения или испарения)
DF=DН-ТDS. (2)
Например, реакция травления аморфного оксида кремния является эндотермической, DН=+11 ккал/моль:
SiO2 (тв.)+6HF(ж.)®Н2 SiF6 +2H2 O. (3)
Таблица 1. Материалы полупроводниковой электроники.
Проводники |
Ag, Al, Au, Cr, Cu, Mo, Ni, Pb, Pt, Ta, Ti,W |
Полупроводники | Si, Ge, GaAs |
Диэлектрики | SiO2 , Si3 N4 , резист, полиимид |
Преодоление короткодействующих сил в амфорном твердом теле сопровождается ростом энтропии. Небольшие дефекты, такие, как напряжение, деформация, примесные уровни, также оказывают влияние на скорость травления. В кристаллическом кремнии скорость травления плоскостей с малыми индексами Миллера определяется числом свободных связей и кристаллографической ориентацией (табл. 2).
Таблица 2. Влияние ориентации на травление кремния.
Кристаллографическая плоскость | Относительное число свободных связей | Относительная скорость травления |
(111) (110) (100) | 0.58 0.71 1.00 | 0.62 0.89 1.00 |
Переход металла или кремния в растворимое состояние включает в себя ионизацию металла (определяемую потенциалом ионизации) и перенос электрона к соответствующему восстановителю с высоким сродством к электрону
М(тв.) ®Мn+ (ж.)+ne. (4)
Реакция эта трехстадийная:
М(тв.) ®М(газ) сублимация, (5)
М(газ) ® Мn+ (газ)+ne ионизация, (6)
Мn+ (газ)+Н2 О ® Мn+ (ж.) гидратация. (7)
Изменение энтальпии при сублимации и ионизации положительно (эндотермические реакции), но гидратация экзотермична (отрицательное DН). При газофазном травлении для распыления металла путем его сублимации кинетическая энергия частиц травителя (энергия травления) должна передаваться металлу из газовой фазы. При погружении металлического образца в раствор, содержащий его собственные ионы (уравнение 4), ионы металла переходят в раствор (рис. 5), и образец приобретает отрицательный заряд. Метал образует, таким образом, свой собственный анод. и ионы Мn+ притягиваются к нему, формируя двойной электрический слой (слой Гельмгольца). разность потенциалов в нем называется
Рис. 5. Двойной слой Гельмгольца на границе металла в равновесии с ионами металла в жидкой фазе (М+ ) и анионами (Х- ).
абсолютным электродным потенциалом. Стандартные окислительные и восстано-вительные потенциалы можно найти в литературе по электрохимии. На катоде происходит уравновешиваю-щее окисление, и катодную реакцию в растворе можно записать следующим образом:
ne+ Xn- ®Xn . (8)
итоговое приращение свобод-ной энергии, DF, составляет
DF=-nФDЕ, (9)
где DЕ есть разность анодного и катодного потенциалов, а
Ф-число Фарадея. Величина изменения свободной энергии зависит от:
1) чистоты металла, его кристаллической структуры, наличия напряжений, метода осаждения и состава примесей;
2) активности ионов металла в растворе;
3) ионной силы электролита;
4) температуры;