Сочинение: Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора
Аn = (U-V) ∙(U+V) /38/
V= /39/
U= /40/
B = /41/
C = /42/
Пусть: An = (abc) n, /43/
где: a, b, c - простые или составные целые положительные числа.
При этом должно быть, например:
X=сm; X2=c2m. /44/
В любом случае должно соблюдаться соотношение: 2m ≤ n.
Из уравнений / 41/ и /42/ следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел Aи X: оба числа должны быть четными или оба нечетными.
Из уравнений / 41/, /42/ и /43/ следует:
В= /45/
C= /46/
Обозначим:
P = /47/
Q = /48/
Тогда:
B = /49/
С = /50/
Из уравнений /47/ и /48/ имеем:
Q = /51/
Таким образом, из уравнений /50/ и /51/ следует:
С = /52/
Из анализа уравнений /49/ и /52/ следует, что поскольку разность между числами Qи Pравна всего лишь:
Q- P = P + 1 - P = 1, /53/
то, по меньшей мере, одно из чисел В или С является дробным числом.
Допустим, что число В - целое число.
ПРИМЕР: c=5; P = 612 = 3721; n =2m = 4; m=2.