Статья: Геометрические свойства регулярного круглого конуса в пространстве
Приведены явные формулы для вычисления множеств положительных и отрицательных частей произвольного элемента в пространстве , упорядоченном круглым регулярным конусом. Определено множество элементов, на котором реализуется минимум в формуле расстояния от элемента до конуса, и исследуется вопрос о совпадении этого множества с множеством положительных частей элемента.
Введение
Теория конусов является актуальным разделом функционального анализа и находит большое применение во многих областях математики. Геометрическим свойствам пространств, упорядоченных конусами различного вида, посвящены работы Л. В. Канторовича, Б. 3. Вулиха [1,2], М. А. Красносельского [3], В. Т. Худалова [4,5]. В работе автора [6] дано общее описание регулярного круглого конуса в пространстве и описаны некоторые его свойства. Данная статья посвящена дальнейшему исследованию порядковых свойств пространства .
1. Предварительные сведения
Приведем необходимые для дальнейшего использования определения и результаты.
1.1. Пусть Е – банахово пространство над полем действительных чисел R, Е+ – конус в Е. Конус Е+ называется регулярным, если выполнены следующие условия:
±х ≤ у Þ ||х|| ≤ ||y|| для любых х, у Î Е,
для любого х Î Е и любого e > 0 существует у Î Е+ такой, что ±х ≤ у и ||у|| ≤ (1+e) ||х||.
Регулярный конус Е+ называется строго регулярным, если выполнено условие (2) при e = 0, т. е.
(2') для любого х Î Е существует у Î Е+ такой, что ±х ≤ у и ||y|| = ||х||.
Упорядоченное замкнутым строго регулярным конусом Е+ пространство Е обозначают (Е, Е+) Î (Â), см. [1,2].
1.2. Одним из наиболее общих методов построения конуса в произвольном банаховом пространстве, обладающего свойствами нормальности, несплющенности, а также другими свойствами, является следующий: пусть X – банахово пространство, f Î X* – произвольный непрерывный линейный функционал на X такой, что ||f|| = 1. Для любого aÎ (0,1] определим K(f,α):={xÎX: f(x) ≥ a||х||}.
Если Н – гильбертово пространство над R, то для любого aÎН, ||a|| = 1, конус К(а, a) имеет вид:
K(a, α) = {x Î X : (a, x) ≥ a ||x||}.
Если dim H > 1, то для любого а Î Н, ||a|| = 1, конус К (а, a) строго регулярен в Н тогда и только тогда, когда a = [5].
1.3. Отметим, что класс регулярных конусов в пространствах и l1 совпадает с классом строго регулярных конусов [5]. Данная работа опирается на следующее описание всех регулярных круглых конусов, полученных в [4].
Теорема. Конус K(f, a) является регулярным , n > l1 только при двух значениях aÎ (0,1]:
при a = 1 каждая координата вектора f = (f1, f2,..., fn) равна +1 или – 1; при этом имеется 2n конусов, порождающих упорядоченные банаховы пространства, порядково изоморфные и линейно изометричные пространству с естественным конусом положительных элементов;
при a = 0,5 одна из координат (j-я координата) вектора f = (f1, f2,..., fn) равна ±1, а все остальные – нули; при этом имеется 2n конусов, порождающих упорядоченные банаховы пространства, порядково изоморфные и линейно изометричные пространству с конусом
Kj = {х = (x1,x2,...,xn) : xj ≥ }. (1)
1.4. Пусть (Е, Е+) Î (Â). Для любого х Î Е обозначим через |Х| множество элементов у Î Е таких, что ± x ≤ у и ||x|| = ||y||. Любой элемент этого множества называется метрическим модулем элемента x.
Положим
X+ = ½ x + ½|X|, X− = −½ x + ½|X| .
Множества Х+ и Х− называются множествами положительных (соответственно отрицательных) частей элемента x. Если у Î |Х|, т.е. ±x ≤ у и ||у|| = ||x||, то положим x+ = (у + x)/2, x− = (у – x)/2, |x| = x+ + x−. Из определения следует, что |x| ≥ ± x, причем
x = x+ − x−, |x| = x+ + x−, ||x+ - x−|| = ||x+ + x−||, ||x|| = |||x|||.
1.5. Конус Е+ в упорядоченном банаховом пространстве (Е, Е+) Î (Â) называется достижимым, если для любого x Î Е существует элемент Рх Î Е+, на котором реализуется минимум в формуле расстояния от х до Е+, т. е.
d(x, E+) = inf{||а – x|| : a Î E+} = ||Рx – x||.
Множество всех таких Рх обозначается М(х).
1.6. При вычислении расстояния от точки до конуса воспользуемся следующим результатом из [5].
--> ЧИТАТЬ ПОЛНОСТЬЮ <--