Статья: Иррациональные уравнения и неравенства
Иррациональным называется выражение, содержащее корни n-ой степени.
1) Одно из типичных преобразований иррациональных выражений – избавление от иррациональности в знаменателе.
а) Если в знаменателе стоит выражение вида , то необходимо числитель и знаменатель умножить на сопряженное к нему выражение . В этом случае применяется формула .
б) Если в знаменателе стоит выражение (или ), то числитель и знаменатель умножается, соответственно, на (или ). В этом случае применяются формулы
,
.
Пример 1. Избавиться от иррациональности в знаменателе:
а) ; б) ; в) ; г) ; д) ; е) .
Решение:
а) ;
б) ;
в) ;
г) ;
д) ;
е)
.
Отметим еще одно свойство:
которое часто применяется в преобразованиях.
Пример 2. Упростить выражение:
а) ; б) ; в) .
Решение:
а) , т.к. .
б) , т.к. .
в)
.
???????, ??? ????? n ????????? ??? ?????? ?????? ?????? ????: n=-1, n=1, n=0.
1) Если n<-1, то
2) Если -1£n<0, то
--> ЧИТАТЬ ПОЛНОСТЬЮ <--