Статья: Локальная и нелокальная задачи для уравнения смешанного типа второго порядка с оператором Геллестедта
, (8)
где .
Обращая (8) как обобщенное интегральное уравнение Абеля относительно , получаем [2]:
. (9)
Или с учетом перестановки Дирихле порядка интегрирования во втором интеграле правой части (9), получаем:
. (10)
Рассмотрим
.
Произведя замену переменных в последнем равенстве, получим
. На основании равенства [3]
будем иметь
. (11)
Подставляя (11) в (10), окончательно получаем функциональное соотношение между и , привнесенное из гиперболической части области Ω на линию y = 0:
. (12)
При m = 0 оно принимает вид:
. (13)
Устремляя из Ω1, получаем функциональное соотношение между и , привносимое на линию y = 0 в виде:
. (14)
В начале рассмотрим случай, когда m = 0. Исключая из уравнения (13) и (14) и, учитывая краевые условия (2), приходим к задаче
, (15)
. (16)
Решение (15), (16) представим в виде:
, (17)
где обозначено
.