Статья: Локальная и нелокальная задачи для уравнения смешанного типа второго порядка с оператором Геллестедта
После определения в области Ω1 приходим к задаче (1), (2) и . Нетрудно убедиться, что решение этой задачи удовлетворяет интегральному уравнению
, (18)
где
– функция Грина указанной выше смешанной задачи для уравнения теплопроводности. Отсюда, полагая в (18) x = x0, для функции получаем интегральное уравнение
(19)
с ядром
и правой частью .
Уравнение (19) является интегральным уравнением Вольтерра второго рода и оно безусловно разрешимо в пространстве .
ЗАДАЧА 2. Требуется найти функцию , удовлетворяющую всем условиям задачи 1, кроме второго условия из (2) и (4), вместо которых берут условия:
, (20)
. (21)
Для решения задачи 2, поступая как выше, с учетом условия (21) функцию однозначно определим решением уравнения (15), удовлетворяющим условиям
.
Пользуясь функцией Грина второй краевой задачи для уравнения теплопроводности, убеждаемся, что решение задачи 2 в области Ω1 удовлетворяет уравнению
, (22)
где .
Отсюда полагая в (22) x = x0 и учитывая условие (20), получаем систему интегральных уравнений Вольтерра второго рода относительно и :
(23)
,
,
,
.
В силу свойства функции Грина и ядер системы (23), нетрудно убедиться, что система уравнений (23) допускает единственное решение в пространстве [4].
Пусть теперь m > 0. Исключая из системы уравнений (12) и (15), получаем интегродифференциальное уравнение относительно :
, (24)