Статья: Локальная и нелокальная задачи для уравнения смешанного типа второго порядка с оператором Геллестедта
Доказана однозначная разрешимость локальной и нелокальной краевых задач для нагруженных уравнений 2 порядка оператора Геллестедта.
Рассмотрим уравнение
(1)
в области Ω, ограниченной отрезками АА0, ВВ0, А0В0 прямых соответственно и характеристиками
уравнения (1) в полуплоскости y<0, λ(y) – заданная непрерывная функция.
Пусть – параболическая, - гиперболическая области Ω, - интервал прямой y=0.
ЗАДАЧА 1. Найти в областях Ω1, Ω2 решение
уравнения (1), удовлетворяющее краевым условиям
, (2)
, (3)
где - непрерывные, а - дважды непрерывно дифференцируемая функции, причем
. (4)
Решение задачи Коши для уравнения (1), y<0, в области Ω2 имеет вид [1]:
, (5)
где .
Удовлетворяя (5) заданному условию (3), получим
. (6)
В равенстве (6) сделаем замену
.
В результате получим
.
Заменяя в последнем равенстве x через , получаем:
. (7)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--