Статья: Метилотрофные бактерии - источники изотопно-меченных Н-2 и С-13 аминокислот
БИОТЕХНОЛОГИЯ
МЕТИЛОТРОФНЫЕ БАКТЕРИИ - ИСТОЧНИКИ ИЗОТОПНО - МЕЧЕННЫХ 2 Н- и 13 С- АМИНОКИСЛОТ.
@ О.В. МОСИН.
Московская государственная академия тонкой химической технологии им. М.В. Ломоносова, 117571.
Изучена возможность использования различных штаммов метилотрофных бактерий для получения аминокислот, меченных стабильными изотопами 2 Н и 13 С, как секретируемыми в культуральную жидкость в процессе ферментации штаммов-продуцентов, так и выделяемыми из гидролизатов суммарного белка биомассы. Представлены данные по адаптации L-фенилаланин-продуцирующего штамма факультативных метилотрофных бактерий Brevibacterium methylicum к ростовым средам, содержащим 2 об.% С2 Н3 О2 Н и 98 об.% 2 Н2 О и биосинтезу L-фенилаланина. Для L-лейцин-продуцирующего штамма облигатных метилотрофных бактерий Methylobacillus flagellatum проведено культивирование на среде, содержащей 1 об.% 13 СН3 ОН и 99 об.% Н2 О. Уровни изотопного включения 2 Н- и 13 С в аминокислоты были изучены методом масс-спектрометрии электронного удара в виде метиловых эфиров N-диметиламинонафталин-5-сульфонильных (дансильных) производных аминокислот и бензилоксикарбонильных производных (Z-производных) аминокислот. Максимальные уровни включения стабильных изотопов 2 Н-и 13 С в аминокислоты при росте метилотрофных бактерий на средах, содержащих 2 об. % СН3 ОН и 98 об.% 2 Н2 O, и 1 об.% 13 CH3 OH и 99 об.% Н2 О составляют 97,5% и 95% соответственно.
Ключевые слова: Стабильные изотопы. - Brevibacterium methylicum. - Methylobacillus flagellatum. - Культивирование на 2 Н2 О. - Изотопно-меченные аминокислоты.
ВВЕДЕНИЕ
Разработка путей биосинтетического получения аминокислот, меченных 2 Н и 13 С является актуальной задачей для современной биотехнологии. Стоимость полученных таким способом изотопно меченных соединений значительно ниже, чем химически синтезированных, что представляет интерес для поиска новых штаммов - продуцентов аминокислот, способных к росту и биосинтезу на изотопно-меченных средах.
Удобными и дешёвыми источниками изотопно-меченных аминокислот могут быть метилотрофные бактерии, биотехнологический потенциал которых в настоящее время общепризнан [1,2]. Субстратом для роста метилотрофов при получении меченных аминокислот является метанол (или его меченные аналоги С2 Н3 О2 Н/13 СН3 ОН), и другие низкомолекулярные соединения, например, тяжёлая вода (2 Н2 О) [3]. Однако, высокие концентрации 2 Н2 О в ростовой среде могут вызвать ингибирование роста и развития метилотрофов [3]. Несмотря на негативный биостатический эффект, оказываемый тяжёлой водой на клетки, некоторые бактерии устойчивы к высоким концентрациям тяжёлой воды в среде [4], в то время как растительные клетки могут нормально развиваются при концентрациях не более 50-75 % 2 Н2 О, а клетки животных не более 35 % 2 Н2 О [5]. В отличие от тяжёлой воды, при использовании 13 СН3 ОН в качестве источника метки нет необходимости проводить предварительную адаптацию культуры к изотопному субстрату, так как показано, что изотопный эффект 13 СН3 ОН незначителен [6]. Поэтому использование для получения 13 С -аминокислот облигатных метилотрофных бактерий, которые способны ассимилировать только метанол в качестве единственного источника углерода и энергии является очень перспективным.
В плане раннее начатых исследований с метилотрофами по получению аминокислот, меченных стабильными изотопами, практический интерес представляет использование метилотрофных бактерий, особенно продуцентов аминокислот для получения целевых соединений за счет биоконверсии низкомолекулярных меченных субстратов [7-10]. Традиционным подходом при получении аминокислот является культивирование штаммов - продуцентов на средах, содержащих изотопно-меченные субстраты и 2 Н2 О с последующим выделением меченных аминокислот как из культуральной жидкости после ферментации штаммов-продуцентов, так и из гидролизатов общего белка биомассы.
Целью данной работы было изучение принципиальной возможности получения 2 Н-и 13 С-аминокислот за счёт использования штаммов метилотрофных бактерий Brevibacterium methylicum и Methylobacillus flagellatum .
УСЛОВИЯ ЭКСПЕРИМЕНТА .
Бактериальные штаммы . Исследования проводили с генетически маркированными штаммами метилотрофных бактерий, полученными из коллекции культур Всероссийской коллекции промышленных микроорганизмов (ВКПМ) Государственного научно-исследовательского института генетики и селекции промышленных микроорганизмов:
1. - Brevibacterium methylicum ВКПМ В 5652 , лейцинзависимый штамм факультативных метилотрофных бактерий, продуцент L-фенилаланина.
2. - Methylobacillus flagellatum KT , изолейцинзависимый штамм облигатных метилотрофных бактерий, продуцент L-лейцина.
В работеиспользовали 2 Н2 O (99,9% 2 Н), С2 Н3 О2 Н (97,5 % 2 Н) и 13 СН3 ОН (97,5 % 13 С), полученные из Российского научно-исследовательского центра “Изотоп” (Санкт-Петербург, РФ), а также N-диметиламинонафталин-5-сульфохлорид (дансилхлорид) (Sigma, CША), карбобензоксихлорид (Войковский химзавод, РФ).
Условия адаптации . Адаптацию штаммов к дейтерию проводили на агаризованных средах (2 %-ный агар), содержащих тяжёлую воду. При этом использовали рассев культур до отдельных колоний на средах, содержащих ступенчато увеличивающиеся концентрации тяжёлой воды [9].
Культивирование бактерий проводили на минеральной среде М9 [11], как описано в работе [9].
Гидролиз белка проводили с использованием 6 н. 2 НСl (в 2 Н2 О) и 4 н. Ва(ОН)2 (1100 , 24 ч) [12].
Экстракцию липидов проводили смесью хлороформ-метанол (2:1) по методу Блайя и Дайера [13].
Метиловые эфиры дансиламинокислот получали как описано в работе [8].
Бензилоксикарбонильные производные аминокислот получали как указано в работе [14].
Аналитическое и препаративное разделение бензилоксикарбонильных производных аминокислот культуральной жидкости и белковых гидролизатов проводили методом обращённо-фазовой высокоэффективной жидкостной хроматографии (ВЭЖХ) по раннее разработанной методике [15].
Разделение метиловых эфиров дансил-аминокислот проводили методом обращённо-фазовой ВЭЖХ на жидкостном хроматографе “Knauer” (ФРГ), снабженным насосом“Knauer”, УФ-детектором “2563” и интегратором “С-R 3A” (Shimadzy, Япония). Использовали неподвижную фазу: Separon SGX C 18, 7 мкм, 150 x 3,3 мм (Kova, Чехословакия). Элюирование проводили в системе растворителей: (А) - ацетонитрил-трифторуксусная кислота (20:80 об/об) и (В) - ацетонитрил. Использовали градиентное элюирование: от 20% В до 100%В в течение 30 мин, при 100% В в течение 5 мин, от 100% В до 20% В в течение 2 мин, при 20% В в течение 10 мин.
Ионнообменную хроматографию белковых гидролизатов проводили на приборе “Biotronic LC 5001” (ФРГ), 230x 3,2 мм, рабочее давление 50-60 атм, скорость подачи цитратного буфера 18,5 мл/ч, нингидрина 9,25 мл/ч, детекция при 570 и 440 нм.
Количественное определение L-фенилаланина в культуральной жидкости проводили на приборе “Beckman DU- 6” (США) при 540 нм, после обработки препаратов культуральной жидкости нингидрином.
Масс-спектры электронного удара производных аминокислот получены на приборе “MB-80A” (Hitachi, Япония) при энергии ионизирующих электронов 70 эВ.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ .
Получение штаммов - продуцентов аминокислот, адаптированных к максимальным концентрациям 2 Н2 О в среде .
В рамках данной работы была исследована возможность адаптации различных штаммов метилотрофных бактерий, продуцентов аминокислот к росту на средах с максимальными концентрациями тяжёлой воды. Для этого были проверены два из имеющихся в коллекции “ГосНИИ Генетики” штаммов метилотрофных бактерий: штамм облигатных метилотрофных бактерий M. flagellatum , продуцент L-лейцина и штамм факультативных метилотрофных бактерий B. methylicum , продуцент L-фенилаланина.
Для проведения адаптации был выбран ступенчатый режим увеличения концентрации 2 Н2 О в ростовых средах, так как мы предположили, что постепенное привыкание организма к 2 Н2 О будет оказывать благоприятный эффект на адаптацию. Этапы адаптации метилотрофных бактерий к средам, содержащим максимальные концентрации 2 Н2 О показаны на рис. 1 и схеме. Однако вопреки нашим ожиданиям, штамм облигатных метилотрофных бактерий M. flagellatum обнаружил повышенную чувствительность к тяжёлой воде (ингибирование роста бактерий наблюдалось при концентрациях 2 Н2 О в среде 74,5 об.%) [3]. Дальнейшие эксперименты по адаптации с данным штаммом метилотрофных бактерий не проводились. В связи с этим в наших экспериментах по изучению уровней включения дейтерия в аминокислоты использовались препараты культуральной жидкости и биомасса M. flagellatum, полученная со среды, содержащей 74,5 об.% 2 Н2 О и 1 об.% С2 Н3 О2 Н.
Раннее нами был описан метод адаптации штамма факультативных метилотрофных бактерий B. methylicum к росту при сохранении способности к биосинтезу фенилаланина на максимально дейтерированной среде [7]. В данной работе были исследованы образцы биомассы штамма B. Methylicum (рис.1), полученные в ходе многоступенчатой адаптации его к тяжёлой воде на средах с различным содержанием 2 Н2 О (от 0; 24,5; 49,0; 74,5; об% до 98 об% 2 Н2 О). Поскольку данный штамм метилотрофных бактерий удалось адаптировать к максимальным концентрациям 2 Н2 О в ростовой среде, исследование уровней включения дейтерия в аминокислоты суммарных белков биомассы представлялось наиболее интересным.
Факультативные метилотрофные Облигатные метилотрофные
бактерии B. methylicum -источники бактерии M. flagellatum ,
2 Н-аминокислот источники 2 Н-и 13 С-
--> ЧИТАТЬ ПОЛНОСТЬЮ <--