Статья: Вычисление собственных чисел и собственных функций опрератора Штурма-Лиувилля на полуоси
,
и пусть - собственные значения задачи (1)-(3) и соответствующие им собственные функции. Введем обозначение:
. (1.13)
Заметим прежде, что при .
Тогда имеет место следующая
ТЕОРЕМА 1.1 Справедливы равенства
, (1.14)
. (1.15)
Доказательство. Вначале докажем равенство (1.15). Для этого рассмотрим уравнение (1.1) на интервале . Представим ее в виде
, (1.16)
где вычисляется по формуле (1.7). Для уравнения (1.16) получаем интегральные уравнения:
,
.
Применяя метод последовательных приближений, получаем:
, (1.17)
где - решения уравнения (1.4).
Следовательно, для всего промежутка [0,p] справедливо равенство (1.15).
Из (1.15) нетрудно установить неравенство:
, (1.18)
где при .
Тогда имеет место следующее равенство:
(1.19)
при , где - оператор Штурма-Лиувилля задачи (1.1)-(1.3), а - оператор задачи (1.4)-(1.6). Из (1.18) и (1.19) нетрудно показать справедливость оценки (1.14). Теорема доказана.
Следствие 1.1 ,
.
Следствие 1.2 , где - характеристическое уравнение для собственных значений задачи (1.4)-(1.6), - характеристическое уравнение для собственных значений задачи (1.1)-(1.3).
Следствие 1.3 и совпадают со всеми корнями уравнения .
Следствие 1.4 образуют полную систему собственных функций.
II. Сингулярная задача. Случай .