Статья: Вычисление собственных чисел и собственных функций опрератора Штурма-Лиувилля на полуоси

Замечание 1 Известны более общие условия дискретности спектра задачи (2.1)-(2.2) (см. например [4]).

Замечание 2 Для расчета собственных чисел задачи (2.1)-(2.2), промежуток заменяется на , где - достаточно большое положительное число, с краевыми условиями и .

IV. Сингулярная задача. Случай .

Будем рассматривать задачу

, (3.1)

(3.2)

с дополнительными условиями:

;

голоморфна в точке , причем ;

при монотонно, и , где ;

при , .

Данная задача рассматривалась в работе Е.ПЖидкова. и А.Г.Соловьева (см. [5]). Известно, что задача имеет собственные числа и собственные функции такие, что все ее собственные числа простые, отрицательные и образуют бесконечно возрастающюю последовательность с единственной предельной точкой , а собственные функции , отвечающие собственным значениям , имеют в интервале в точности нулей. В этом случае справедливы все результаты, полученные для случая полуограниченного оператора.

Пример

.

Известно (см. [3]), что - собственные числа.

Введем обозначения: - приближенные собственные числа, полученные Е.П.Жидковым и А.Г.Соловьевым, а - приближенные собственные числа, полученные методом, описанным выше. Были рассчитаны собственные числа, которые представлены в таблице (см. ниже). Используя асимптотическую формулу (2.3), можно показать (достаточно грубая оценка), что

,

где вычисляется явно. Для более точной асимптотики необходимо точно решить уравнение

.

n

Промежуток
1 0.2500 0.25000… 0.247… (1.16,6.82)
2 0.1111 0.11107… 0.111… (1.06,16.9)
3 0.0625 0.06249… 0.063… (1.03,30.9)
4 0.0400 0.39995… 0.041… (1.02,48.9)
5 0.0277 0.0277715 0.028… (1.01,70.9)

Список литературы

Митрохин С.И. // ДАН. 1997. Т. 356. № 1. С. 13-15.

Рид, Саймон. Методы современной математической физики. М.: Мир, 1977. Т. 1, 4

Титчмарш. Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка. Т. 1. М.: Наука, 1960. 276 с.

Султанаев Я.Т. // ДАН. 1984. Т. 276. № 5. С. 1072-1074.

Жидков Е.П., Соловьев А.Г. // ЖВММФ. 1999. Т. 39. № 3. С. 1098-1118.


[1] Вопрос о том, как находить значения для расчета собственных чисел, остается нерешенным

К-во Просмотров: 177
Бесплатно скачать Статья: Вычисление собственных чисел и собственных функций опрератора Штурма-Лиувилля на полуоси