Учебное пособие: Анализ временных рядов
Рассмотрим, как влияет процесс сглаживания на случайную составляющую ряда, относительно которой будем полагать, что она центрирована и соседние члены ряда некоррелированы.
Скользящее среднее случайного ряда x есть:
.
В силу центрированности x и отсутствия корреляций между членами исходного ряда имеем:
и .
Далее, .
Из полученных соотношений видно, что усреднение приводит к уменьшению дисперсии колебаний. Кроме того члены ряда, полученные в результате усреднения, не являются теперь независимыми. Производный, сглаженный, ряд имеет ненулевые автокорреляции (корреляции между членами ряда, разделенных k-1 наблюдениями) вплоть до порядка 2m. Таким образом производный ряд будет более гладким, чем исходный случайный ряд, и в нем могут проявляться систематические колебания. Этот эффект называется эффектом Слуцкого-Юла .
4.2 Определение порядка полинома методом последовательных разностей
Если имеется ряд, содержащий полином (или локально представляемый полиномом) с наложенным на него случайным элементом , то было бы естественно исследовать, нельзя ли исключить полиномиальную часть вычислением последовательных разностей ряда. Действительно, разности полинома порядка k представляют собой полином порядка k-1. Далее , если ряд содержит полином порядка p , то переход к разностям , повторенный (p+1) раз, исключает его и оставляет элементы, связанные со случайной компонентой исходного ряда.
Рассмотрим, к примеру, переход к разностям в ряде, содержащим полином третьего порядка.
0 1 8 27 64 125
1 7 19 37 61
6 12 18 24
6 6 6
0 0
Взятие разностей преобразует случайную составляющую ряда.
В общем случае получаем :
;
;
;
;
.
Из последнего соотношения получаем
.
Следовательно, метод последовательных разностей переменной состоит в вычислении первых, вторых, третьих и т.д. разностей , определении сумм квадратов, делении на и т.д. и обнаружения момента , когда это отношение становится постоянным. Таким образом мы получаем оценки порядка полинома , содержащегося в исходном ряде, и дисперсии случайного компонента.
4.3.Методы экспоненциального сглаживания
Методы построения функций для описания наблюдений до сих пор основывался на критерии наименьших квадратов, в соответствии с которым все наблюдения имеют равный вес. Однако, можно предположить, что недавним точкам следует придавать в некотором смысле больший вес, а наблюдения, относящиеся к далекому прошлому, должны иметь по сравнению с ними меньшую ценность. До некоторой степени мы учитывали это в скользящих средних с конечной длиной отрезка усреднения, где значения весов, приписываемых группе из 2m+1 значений, не зависят от предшествующих значений. Теперь обратимся к другому методу выделения более «свежих» наблюдений.
Рассмотрим ряд весов, пропорциональных множителю b, а именно и т.д. Так как сумма весов должна равняться единице, т.е. , весами фактически будут и т.д. ( предполагается , что 0<b<1.)
4.3.1 Простое экспоненциальное сглаживание
Рассмотрим простейший ряд , равный сумме постоянной (уровень) и случайной компоненты :