Учебное пособие: Анализ временных рядов
Будем считать, что ряд имеет бесконечную предысторию, т. е. время принимает значения t,t-1,t-2,..., - ¥ . Найдем оценку уровня ряда , воспользовавшись минимизацией взвешенной суммы квадратов:
.
В приведенном выражении расхождения между наблюденными значениями ряда и оценкой уровня берутся с экспоненциально убывающими весами в зависимости от возраста данных.
; ; .
Полученную оценку на момент t обозначим (t ). Сглаженное значение в момент t можно выразить через сглаженное значение в прошлый момент t -1 и новое наблюдение :
Полученное соотношение
(t ) =
Перепишем несколько иначе, введя так называемую постоянную сглаживания (0 £a £1).
(t ) ,
Из полученного соотношения видно, что новое сглаженное значение получается из предыдущего коррекцией последнего на долю ошибки, рассогласования, между новым и прогнозным значениями ряда. Происходит своего рода адаптация уровня ряда к новым данным.
4.3.2 Экспоненциальное сглаживание высоких порядков
Обобщим метод экспоненциального сглаживания на случай , когда модель процесса определяется линейной функцией . Как и прежде, при заданном b минимизируем:
.
(Здесь для удобства представления знаки ~ и Ù опущены).
,
С учетом того что
, ,
получаем
Запишем : .
Эту операцию можно рассматривать как сглаживание 1-го порядка. По аналогии построим сглаживание 2-го порядка:
.
ß