Учебное пособие: Анализ временных рядов
(1)
можно записать как
(2)
Последнее соотношение получается из (1) сравнением двух значений ряда для соседних моментов t -1 и t . Учитывая, что соотношение (2) справедливо и для моментов t -2 и t - 1, так что , модель (1) можно записать и в виде
(3)
Модель (3) не содержит явно параметров, описывающих тренд. Более компактно описанные преобразования можно описать, используя операторы взятия разности назад
.
.
Модели (2) и (3) можно записать как
, .
Выходит, разность второго порядка полностью исключает из исходного ряда линейный тренд. Легко видеть, что разность порядка d исключает из ряда полиномиальный тренд порядка d -1. Пусть теперь ряд содержит сезонный эффект с периодом t , так что
(4).
Процедура перехода от ряда (t = 1,2,...,T ) к ряду называется взятием первой сезонной разности, а оператор сезонным разностным оператором с периодом t . Из (4) следует, что