Учебное пособие: Фізика напівпровідників
Історично склалось так, що поле макрострумів характеризується іншою характеристокою – напруженістю магнітного поля (). В системі СІ індукція та напруженість магнітного поля мають різні одиниці вимірювання: ; між цими двома характеристиками магнітного поля існує зв’язок
, (4.7)
де – магнітна стала.
Для графічного зображення магнітного поля використовують лінії магнітної індукції, які проводяться так, щоб дотична до них в кожній точці співпадала з напрямком в цій точці. Лінії магнітної індукції проводяться з такою густиною, щоб число ліній, які перетинають нормальну до них площадку одиничної площі чисельно дорівнювало в даному місці простору. Лінії магнітної індукції не мають ні початку, ні кінця, вони або замикаються навколо провідників зі струмом, або ідуть з нескінченності в нескінченність. Їх напрямок встановлюється згідно з правилом свердлика (див.мал.4.3, 4.4).
Магнітне поле прямолінійного Магнітне поле довгого соленоїда нескінченно довгого провідника зі зі струмом.
Магнітне поле називається однорідним, якщо у всіх його точках . Лінії індукції однорідного поля – паралельні прямі, проведені з однаковою густиною. Однорідним є поле всередині нескінченно довгого соленоїда (мал.4.4).
§ 4.2. Закон Біо-Савара-Лапласа для елемента струму. Магнітне поле прямолінійного та колового струмів
Закон Біо-Савара-Лапласа встановлює індукцію магнітного поля, створеного елементом струму в певній точці простору:
(4.8)
або, у скалярній формі,
(4.9)
де – радіус-вектор, проведений від елемента струму до даної точки; – кут між елементом струму і радіусом-вектором. Напрямок визначається за правилом свердлика (мал.4.5).
Індукцію поля, створеного в даній точці простору всім провідником, знаходимо за принципом суперпозиції:
(4.10)
Закон Біо-Савара-Лапласа та принцип суперпозиції дозволяють отримати вирази для магнітних полів, створених провідниками різних конфігурацій. Зокрема:
а) магнітне поле скінченного прямолінійного струму в точці простору на відстані R від провідника (мал.4.6)
, (4.11)
б) магнітне поле нескінченно довгого струму в точці простору на відстані Rвід провідника (мал. 4.7)
, (4.12)
в) магнітне поле в центрі колового струму (мал.4.8)
. (4.13)
§ 4.3. Теорема про циркуляцію вектора . Поле соленоїда
Циркуляцією вектора по деякому замкненому контуру l називається інтеграл виду
(4.14)
де – проекція вектора на напрямок дотичної до елемента контура dl. Ця фізична величина описується однойменною теоремою:
циркуляція вектора напруженості магнітного поля по довільному замкненому контуру дорівнює алгебраїчній сумі всіх струмів, охоплених цим контуром,
. (4.15)
За допомогою цієї теореми можна розрахувати напруженість магнітного поля всередині довгого соленоїда (мал.4.4):
, (4.16)
де – число витків на одиниці довжини соленоїда.
Індукція магнітного поля всередині соленоїда