Учебное пособие: Фізика напівпровідників

Історично склалось так, що поле макрострумів характеризується іншою характеристокою – напруженістю магнітного поля (). В системі СІ індукція та напруженість магнітного поля мають різні одиниці вимірювання: ; між цими двома характеристиками магнітного поля існує зв’язок

, (4.7)

де – магнітна стала.

Для графічного зображення магнітного поля використовують лінії магнітної індукції, які проводяться так, щоб дотична до них в кожній точці співпадала з напрямком в цій точці. Лінії магнітної індукції проводяться з такою густиною, щоб число ліній, які перетинають нормальну до них площадку одиничної площі чисельно дорівнювало в даному місці простору. Лінії магнітної індукції не мають ні початку, ні кінця, вони або замикаються навколо провідників зі струмом, або ідуть з нескінченності в нескінченність. Їх напрямок встановлюється згідно з правилом свердлика (див.мал.4.3, 4.4).

Магнітне поле прямолінійного Магнітне поле довгого соленоїда нескінченно довгого провідника зі зі струмом.

Магнітне поле називається однорідним, якщо у всіх його точках . Лінії індукції однорідного поля – паралельні прямі, проведені з однаковою густиною. Однорідним є поле всередині нескінченно довгого соленоїда (мал.4.4).


§ 4.2. Закон Біо-Савара-Лапласа для елемента струму. Магнітне поле прямолінійного та колового струмів

Закон Біо-Савара-Лапласа встановлює індукцію магнітного поля, створеного елементом струму в певній точці простору:

(4.8)

або, у скалярній формі,

(4.9)

де – радіус-вектор, проведений від елемента струму до даної точки; – кут між елементом струму і радіусом-вектором. Напрямок визначається за правилом свердлика (мал.4.5).

Індукцію поля, створеного в даній точці простору всім провідником, знаходимо за принципом суперпозиції:

(4.10)

Закон Біо-Савара-Лапласа та принцип суперпозиції дозволяють отримати вирази для магнітних полів, створених провідниками різних конфігурацій. Зокрема:

а) магнітне поле скінченного прямолінійного струму в точці простору на відстані R від провідника (мал.4.6)

, (4.11)

б) магнітне поле нескінченно довгого струму в точці простору на відстані Rвід провідника (мал. 4.7)

, (4.12)

в) магнітне поле в центрі колового струму (мал.4.8)

. (4.13)

§ 4.3. Теорема про циркуляцію вектора . Поле соленоїда

Циркуляцією вектора по деякому замкненому контуру l називається інтеграл виду

(4.14)

де – проекція вектора на напрямок дотичної до елемента контура dl. Ця фізична величина описується однойменною теоремою:

циркуляція вектора напруженості магнітного поля по довільному замкненому контуру дорівнює алгебраїчній сумі всіх струмів, охоплених цим контуром,

. (4.15)

За допомогою цієї теореми можна розрахувати напруженість магнітного поля всередині довгого соленоїда (мал.4.4):

, (4.16)

де – число витків на одиниці довжини соленоїда.

Індукція магнітного поля всередині соленоїда

К-во Просмотров: 303
Бесплатно скачать Учебное пособие: Фізика напівпровідників