Учебное пособие: Геометрические построения на плоскости

Сущность метода: при решении задачи, и прежде всего на первом этапе – анализе, наряду с данными и искомыми фигурами рассматривают другие фигуры, полученные из данных или искомых фигур (или их частей) с помощью некоторого геометрического преобразования (ГП). В зависимости от того, какое (ГП) выбрано, говорят о той или иной разновидности метода ГП (метод параллельного переноса, гомотетии, инверсии и т.д.). Рассмотрим примеры.

1. Параллельный перенос (ПП).

Сущность : наряду с данными и искомыми фигурами рассматривают другие фигуры, полученные из указанных фигур (или частей) с помощью ПП.

Задача. Достроить трапецию так, чтобы ее основания и диагонали были соответственно равны четырем данным отрезкам.

Анализ . Пусть ABCD - искомая трапеция. Сделаем параллельный перенос плоcкости, определяемый вектором ВС: ВС : BD → CF.

Треугольник ACFопределен по трем сторонам: AF = a + b, AC = d1 , CF = d2 .

План решения ясен. Предлагаем читателям завершить решение этой задача.

2. Осевая симметрия.

Задача . Даны прямая l и две точки А и В, принадлежащие одной плоскости, определяемой прямой l. Найти такую точку Хl, чтобы сумма АХ + ХВ была минимальной.

Уклонимся от схемы. Рассмотрим Sе . Пусть A′ = Se (A), X = A′B∩ l. Покажем, что Х - искомая точка. В самом деле, для любой точки

Yl: AX + XB = A′B < A′Y + YB = AY + YB (Y ≠ X).

Исследование . Задача всегда имеет решение, причем единственное.

3. Поворот.

Задача . Даны: угол АОВ и точка С внутри него. Построить равносторонний треугольник, одна вершина которого совпадает о точкой С, а две другие лежат на сторонах данного угла.

Анализ . Пусть ∆СDE - искомый. Сделаем поворот плоскости вокруг точки С на угол 60°: R60º (D) = E, R60º (OB) = O′B′, причем E = OB ∩ O′B′. Аналогично находим положение точки D: D = OB ∩ Rc-60º (OA).


Построение очевидно. Доказательство и исследование предлагаем провести самостоятельно.

4. Центральная симметрия.

Задача. Построить квадрат, если даны его центр О и две точки А и В на параллельных его сторонах.

Анализ. Пусть искомый квадрат построен. Тогда А’ и В, где лежат на А’ = Z0 (A), лежат на одной стороне квадрата. Аналогично В’ и А, где В' = Z0 (в), лежат на одной стороне квадрата. Тогда на прямых ВА' и АВ' лежат стороны квадрата. Дальнейшее продолжение не вызывает трудностей, предлагаем провести самим.

5. Метод подобия (гомотетии).

Сущность метода строят фигуру, подобную данной, не учитывая какой-нибудь линейный размер или специальное положение искомой фигуры относительно данных. Затем строят искомую (чаще всего гомотетией), учитывая, что коэффициент подобия равен отношению любых двух соответственных отрезков.

Задача. Даны угол и точка внутри него. Построить окружность, проходящую через точку А и касающуюся сторон угла.

Анализ. Центр искомой окружности должен лежать на биссектрисе данного угла. Снимем требование, чтобы окружность ω проходила через А (это подобно тому, что не требуется, чтобы расстояние от точки О до точки окружности равнялось известному отрезку а). Тогда легко построить окружность ω1 , касающуюся сторон утла. Окружности ω и ω1 гомотетичы (с центром в точке 0). Найдем образы точек А и В: А → А', В→В' . Очевидно, АВ׀׀А'В'.

Учитывая оказанное, можно наметить следующий план решения:

1) строим окружность СО1 , касающуюся сторон угла;

2) проводам ОА;

3) строим точки пересечения ω и ω1 ;

4) из точки А проводим прямую, параллельную прямой А'В'. Пусть В - одна из точек пересечения.

К-во Просмотров: 854
Бесплатно скачать Учебное пособие: Геометрические построения на плоскости