Учебное пособие: Характеристика анализа временных рядов

Пример 1 . Рассмотрим динамику валового сбора хлеба и цен на хлеб в России за 1890 –1910 гг., данные представлены в таблице 1.1. Необходимо определить тип модели для аппроксимации имеющихся временных рядов. В качестве критерия оптимальности выбора модели воспользуемся показателем MSD– среднеквадратическим отклонением.

Таблица 1.1

Годы Валовый сбор хлеба Цены на хлеб Годы Валовый сбор хлеба Цены на хлеб
1. 1890 100 100 12. 1901 135 101
2. 1891 78 131 13. 1902 183 102
3. 1892 91 148 14. 1903 174 103
4. 1893 130 114 15. 1904 191 104
5. 1894 139 89 16. 1905 165 108
6. 1895 130 84 17. 1906 143 122
7. 1896 139 85 18. 1907 161 155
8. 1897 122 83 19. 1908 165 168
9. 1898 143 108 20. 1909 204 152
10. 1899 161 109 21. 1910 200 133
11. 1900 152 102

В статистическом пакете Minitabрассматриваются следующие четыре типа моделей: линейная, квадратическая, экспоненциального роста, логистическая S– кривая. Выполним расчеты по каждой из моделей для обоих временных рядов и представим данные расчетов в таблице 2.

Таблица 1.2

Вид модели MSD
Валовый сбор хлеба Цены на хлеб
линейная 296.219 460.058
квадратическая 272.670 258.870
экспоненциального роста 331.586 452.138
логистическая S – кривая 281.557 нет данных

Наиболее точно описывают имеющиеся данные квадратическая модель, так как среднеквадратическое отклонение (MSD) у этой модели наименьшее . Уравнения тренда, описывающие данные временные ряды имеют вид:

– для валового сбора хлеба:

Yt= 84.5263 + 7.88980*t- 0.148474*t2

– для цены на хлеб:

Yt = 130.932 - 7.72938*t + 0.433980*t2

В результате выполнения операции: Stat > Time Series > Trend Analysis и заполнения диалогового окна на экране появятся графики, которые показаны на рисунке 1.2. На графиках видно, что выбранные нами модели тренда достаточно точно описывают имеющиеся временные ряды.


Рисунок 1.2 – Анализ трендов валового сбора хлеба и цены на него

1.2 Декомпозиция временного ряда. Анализ сезонных колебаний

При анализе временного ряда его изменчивость можно разделить на закономерную (детерминированную) и случайную составляющие. Для многих рядов в экономике причины, порождающие их закономерные составляющие не ясны. Тем не менее их совокупное влияние может быть устойчивым в течении достаточно длительных промежутков времени. Это обеспечивает возможность прогноза для подобных временных рядов.

Составная часть временного ряда, остающаяся после выделения из него закономерных (детерминированных) компонент, представляет собой случайную, нерегулярную компоненту. Она является обязательной составной частью любого временного ряда в экономике, так как случайные отклонения неизбежно сопутствуют любому экономическому явлению. Если систематические компоненты временного ряда определены правильно, что как раз и составляет одну из главных целей при разработке моделей временного ряда, то остающаяся после выделения из временного ряда этих компонент так называемая остаточная последовательность (ряд остатков) будет случайной компонентой ряда.

Случайная компонента ряда обладает следующими свойствами:

– случайностью колебаний уровней остаточной последовательности;

– соответствием распределения случайной компоненты нормальному закону распределения;

– равенством математического ожидания случайной компоненты нулю;

– независимостью значений уровней случайной последовательности, то есть отсутствием существенной автокорреляции.

Проверка адекватности моделей временных рядов основана на проверке выполняемости у остаточной последовательности указанных четырех свойств. Если не выполняется хотя бы одно из них, модель признается неадекватной; при выполнении всех четырех свойств модель адекватна. Данная проверка осуществляется с использованием ряда статистических критериев

Закономерную или детерминированную составляющую при анализе экономического временного ряда обычно разбивают на три составляющие : тренд, сезонную компоненту и циклическую компоненту .

Наличие первых двух составляющих временного ряда можно приблизительно определить визуально, построив график временного ряда. На рисунке 1.3 показаны различные виды временных рядов с трендом и сезонной составляющей.

Рисунок 1.3 – Различные виды временных рядов

На рисунке 1.3 введены следующие обозначения:

1 – временной ряд не содержит сезонной составляющей;

2 – временной ряд содержит аддитивную сезонную составляющую;

3 – временной ряд содержит мультипликативную сезонную составляющую;

К-во Просмотров: 381
Бесплатно скачать Учебное пособие: Характеристика анализа временных рядов