Учебное пособие: Характеристика анализа временных рядов
В – временной ряд содержит аддитивный тренд;
С – временной ряд содержит мультипликативный тренд (при увеличении данных, увеличивается величина сезонных отклонений).
(Ниже в этом пункте будет рассмотрены понятия аддитивной и мультипликативной переменных временного ряда).
Циклическая компонента временного ряда описывает длительные периоды относительного подъёма и спада. Она состоит из циклов, которые меняются по амплитуде и протяженности. Выделение в экономических временных рядах циклической компоненты связано с тем, что экономическая активность не растет (или спадает) постоянными темпами. Она состоит из периодов относительных подъёмов и спадов. Считается, что причиной циклических изменений в экономических показателях является взаимодействие спроса и предложения. Играют роль и другие факторы: рост и истощение ресурсов, увеличение размеров капитала, используемого в бизнесе, продолжительно действующие неблагоприятные (либо благоприятные) для тех или иных отраслей сельского хозяйства погодные условия, изменения в правительственной финансовой и налоговой политике и т. п. Влияние всех этих факторов приводит к тому, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда. Поэтому для ее анализа обычно приходиться привлекать дополнительную информацию в виде других временных рядов, которые оказывают влияние на изучаемый ряд, например, учитывать информацию типа налоговых льгот, перенасыщенности рынка и т. п.
В ходе выполнения данной лабораторной работы необходимо будет учитывать влияние лишь двух составляющих: тренда и сезонной компоненты.
К сезонным относятся такие явления, которые обнаруживают в своем развитии определенные закономерности более или менее повторяющиеся из месяца в месяц, из квартала в квартал. Под сезонностью иногда понимают неравномерность производственной деятельности в отраслях промышленности, связанных с переработкой с/х сырья, поступления которого зависит от времени года. Кроме того, сезонность может возникать из-за сезонного характера спроса на товары, производимые промышленностью и т. д. Как бы ни проявлялась сезонность, она наносит большой ущерб народному хозяйству, который заключается в неравномерном использовании оборудования и рабочей силы, неравномерной постановке сырья и загрузке транспорта в отраслях, связанных с сезонным производством. Изучение сезонных колебаний необходимо для более ритмичной работы предприятий.
Статистическое исследование сезонности ставит следующие задачи: численно выразить проявление сезонных колебаний; выявить их силу и характер в условиях отдельных отраслей народного хозяйства; вскрыть факторы, вызывающие сезонные колебания; найти экономические последствия проявления сезонности. Известно несколько способов исследования сезонных колебаний: способ простых средних, способ относительных чисел, способ Персонса, способ расчета сезонных волн, базирующийся на определении тенденции (методом скользящей средней и методом наименьших квадратов).
Индексы сезонности являются показателями, характеризующими результаты сравнения фактических уровней данного месяца или квартала с уровнями, вычисленными при выявлении основной тенденции для того же месяца или квартала.
Расчет сезонного индекса может быть произведен следующим образом. Предположим, что рассматриваемый временной ряд x1, … xnможет быть описан аддитивной моделью. Пусть p– период последовательности st. Для этого сначала мы должны оценить тренд . Затем для каждого сезона i, 1 ip, необходимо рассмотреть все относящиеся к нему разности: xi– . Каждое из этих отклонений xiот можно рассматривать как результат влияния сезонных изменений. Усреднение этих разностей дает нам оценку сезонной компоненты si. В качестве простейшей оценки можно взять простое среднее , т.е.:
для i = 1,…, p
Сезонный индекс для мультипликативной модели вычисляется по другой формуле.
Minitabпроизводит классическую декомпозицию временного ряда, используя мультипликативную или аддитивную модели. С помощью этой процедуры временной ряд разделяется на три составляющие: тренд , сезонные колебания и ошибку .
Для работы с этим видом анализа необходимо набрать: Stat > Time Series > Decomposition . В результате выполнения этой процедуры на мониторе появится следующие диалоговое окно (рисунок 1.4).
Рисунок 1.4 – Вид диалогового окна "Анализ сезонной декомпозиции"
Диалоговое окно включает в себя следующие параметры:
Variable : выбирается столбец, содержащий исходный временной ряд.
Seasonal Length : Длина сезонного цикла. Вводится целое число большее 2.
Model Type : Выбирается тип модели:
– мультипликативная модель. Используется, если сезонные колебания зависят от уровня данных. В этом случае предполагается, что если данные увеличиваются, то увеличивается и величина сезонных отклонений. Многие временные ряды соответствуют этой модели. Модель имеет следующий вид
yt = Trend * Seasonal * Error
– аддитивная модель имеет следующий вид:
yt = Trend + Seasonal + Error
Model Components : Выбор компонентов присутствующих в модели:
– Trendplusseasonal: Отмечается, если исходные данные содержат тренд и сезонную составляющую.
– Seasonalonly: Отмечается, если при анализе тренд не учитывается. Если данные содержат тренд, но это не указано, то оценки сезонных индексов могут быть не верными.
Initial seasonal period : По умолчанию Minitabсчитает, что исходные данные начинаются с первого периода – 1. Если исследуются месячные данные, и они начинаются с июня, то тогда указывается 6 месяц.
Generate forecasts : Отмечается, если необходимо сделать прогноз. Прогнозные значения отмечаются на графике красным цветом.
Number of forecasts : Вводится число прогнозных значений.