Учебное пособие: Линейные уравнения и их свойства

(3)

Поменяем местами первую и вторую строку в матрице (3), чтобы получить

(в этом случае упрощаются последующие вычисления).

~ (4)

Символ “~” обозначает эквивалентность матриц. Умножим первую строку полученной матрицы (4) на число (-3) и прибавим соответственно к элементам второй строки, далее первую строку матрицы (4) умножим на число (-5) и прибавим к элементам третьей строки этой матрицы. В результате получим матрицу, которой соответствует система уравнений, содержащая неизвестную только в первом уравнении


~ . (5)

Так как в матрице (5) , то, умножая вторую строку этой матрицы на число (-5) и прибавляя ее к третьей строке, получим основную матрицу треугольного вида. Для упрощения разделим элементы последней строки на число (-11):

~ ~ (6)

Расширенной матрице (6) соответствует следующая система уравнений, эквивалентная исходной системе (2)

Отсюда из третьего уравнения получаем . Подставляя найденное значение во второе уравнение, определяем неизвестную :

Наконец, после подстановки найденных значений в первое уравнение, находим неизвестную : Таким образом, решение системы единственное:

Пример 3. Решить систему уравнений


(7)

Решение. Запишем и преобразуем расширенную матрицу системы (7)

~ ~

~~ ~

~ ~ .

Расширенная матрица, полученная на последнем шаге путем вычитания из элементов четвертой строки соответствующих элементов третьей строки, содержит нулевую строку и имеет ступенчатый вид. Отсюда следует, что исходной системе уравнений эквивалентна система из трех уравнений с 4 неизвестными


Неизвестную перенесем в правые части уравнений

Отсюда определяем

Задавая переменной произвольное значение , найдем бесконечное множество решений системы

Если расширенная матрица системы приведена к ступенчатому виду, когда в нулевой строке основной матрицы свободный член отличен от нуля, то система не имеет решения. Например, последняя строка имеет вид . Тогда соответствующее уравнение системы привелось к неверному равенству

К-во Просмотров: 437
Бесплатно скачать Учебное пособие: Линейные уравнения и их свойства