Учебное пособие: Методические материалы по учебной дисциплине "Высшая математика" для студентов I курса заочной формы обучения

4.3 Основные теоремы дифференциального исчисления: Ферма, Ролля, Лагранжа, Коши. Правило Лопиталя. Точки экстремума. Необходимые и достаточные условия существования экстремума.

4.4 Исследование с помощью производных функций на выпуклость и вогнутость Точки перегиба. Асимптоты кривой. Схема исследования функции и построение графика. Использование выпуклого анализа функций в экономических вопросах.


ТЕМА 5 . Дифференциальное исчисление функций нескольких независимых переменных.

5.1 Определение функции нескольких независимых переменных. Область определения. Предел и непрерывность функции нескольких независимых переменных. Частные производные первого порядка. Понятие о частных производных высших порядков.

5.2. Полный дифференциал функции нескольких независимых переменных; его применение в приближенных вычислениях. Производная в данном направлении. Градиент функции, его свойства, использование при решении экономических задач.

5.3.Экстремум функции многих переменных. Необходимое условие. Понятие о достаточных условиях экстремума функций от двух независимых переменных. Условный экстремум. Примеры экономических задач.

5.4.Задача обработки наблюдений. Подбор параметров кривых по способу наименьших квадратов.

5.5. Неявные функции. Производные от неявных функций.


ТЕМА 6 .Неопределенный интеграл.

6.1.Неопределенный интеграл; его свойства. Таблица основных интегралов. Основные методы интегрирования.

6.2.Интегрирование рациональных дробей с квадратичными знаменателями. Интегрирование рациональных дробей методом разложения на элементарные дроби.

6.3.Интегрирование простейших иррациональностей. Интегрирование некоторых тригонометрических выражений.


ТЕМА 7 .Определенный интеграл.

7.1 Задачи. приводящие к понятию определенного интеграла. Определенный интеграл как предел интегральных сумм. Свойства определенного интеграла.

7.2 Производная от определенного интеграла по верхнему пределу. Связь между определенным и неопределенным интегралом (формула Ньютона-Лейбница). Вычисления определенных интегралов способом подстановки и по частям.

7.3 Геометрические приложения определенного интеграла: вычисление площадей криволинейных фигур и объемов тел вращения. Приближенное вычисление определенных интегралов по формулам прямоугольников. трапеций Симпсона.

7.4 Несобственные интегралы:

-интегралы с бесконечными пределами интегрирования.

-интегралы от неограниченных функций.

7.5 Понятие о двойном интеграле. Сведение двойного интеграла к повторному.


ТЕМА 8 .Дифференциальные уравнения.

8.1 Понятие о дифференциальном уравнении и его решении. Задача Коши. Решение дифференциальных уравнений первого порядка с разделяющимися переменными. однородных и линейных.

8.2 Решение линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэфициентами и с правыми частями специального вида: f(x)=Pn(x)*eax ; f(x)=eax (Acos Bx+Bsin Bx)

8.3 Системы линейных дифференциальных уравнений с постоянными коэффициентами. Понятие об устойчивости решений.

8.4 Линейные разностные уравнения с постоянными коэффициентами.


Тема 9. Ряды.

9.1 Понятие числового ряда. Сходимость рядов. Свойства сходящихся рядов. Необходимое условие сходимости. Ряд геометрической прогрессии.

9.2 Признаки сходимости рядов с положительными членами – признак Даламбера, Коши (радикальный и интегральный), признаки сравнения.

9.3 Знакопеременные ряды. Абсолютная и условная сходимости. Теорема Лейбницк.

К-во Просмотров: 484
Бесплатно скачать Учебное пособие: Методические материалы по учебной дисциплине "Высшая математика" для студентов I курса заочной формы обучения