Учебное пособие: Основы анализа и синтеза комбинационных логических устройств

3) алгебраически;

4) графически.

Пример словесного описания : функция f(x1 ,x2 ) принимает значение 1, когда значения переменных равны: x1 = x2. При неравенстве переменных x1 ¹x2 функция принимает значение 0.

Эту функцию представляют также табл.1.1, которая содержит все 2n возможных наборов значений логических переменных (аргументов) и значения функции, соответствующие каждому из наборов.

Таблица 1.1

Таблица истинности .

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 1

1.1.1 Алгебраическое представление логической функции в совершенной нормальной форме

Различают две формы алгебраического представления логической функции:

совершенная дизъюнктивная нормальная форма (СДНФ);

совершенная конъюнктивная нормальная форма (СКНФ).

Для перехода от табличного представления функции к алгебраическому в виде ее СДНФ каждому i-ому набору переменных ставится в соответствие минтерм (mi ) (константа единицы) - конъюнкция переменных, которые входят либо в прямом виде, если значение данной переменной в наборе равно 1, либо в инверсном виде, если значение переменной равно 0. Для n переменных составляют q=2n минтермов: m0 , m1 ,... , mq-1 .

Алгебраическое выражение логической функции в форме СДНФ представляют в форме суммы:

,

где fi , mi - значение функции (0 или 1) и минтерм, соответствующий i- ому набору переменных.

Для перехода от табличного представления функции к алгебраическому в виде СКНФ каждому i-ому набору переменных ставится в соответствие макстерм (Mi ) - дизъюнкция переменных, которые входят либо в прямом виде, если значение данной переменной равно 0, либо в инверсном виде, если значение переменной равно 1 [1].

Алгебраическое выражение логической функции в форме СКНФ представляют в виде произведения

,

где fi , Mi - значение функции и макстерм, соответствующий i-ому набору переменных.

Пример 1.1. Логическая функция равнозначность (эквивалентность) для двух переменных представлена табл.1.2.:

Таблица 1.2.

Таблица истинности

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 1

Представить эту функцию в алгебраической форме в виде СДНФ и СКНФ.

Решение. 1. Для n=2 переменных составляют q = 2n = 4 минтерма и макстерма, которые вписаны соответственно в 3-ю и 4-ю графы табл.1.3.

Таблица 1.3

Минтермы и макстермы

x1 x2 mi Mi f
1 2 3 4 5
0 0
0 1
1 0
1 1

2. Алгебраическое представление логической функции в СДНФ

3. Алгебраическое представление логической функции в СКНФ

Ускорить процесс нахождения СДНФ и СКНФ можно, если применить другие правила.

СДНФ находят по правилу записи логической функции “по единицам”:

К-во Просмотров: 310
Бесплатно скачать Учебное пособие: Основы анализа и синтеза комбинационных логических устройств