Учебное пособие: Особенности эконометрического метода
факторы, включаемые в уравнение множественной регрессии должны удовлетворять сл. Требованиям: - должны быть количественно измеримы, не должны быть интеркоррелированы ( т.е. не должны быть связаны друг с другом и тем более не находиться в функциональной зависимости). Если между факторами существует большая корреляция, то нельзя определить их изолированное влияние на результативный признак. Тогда параметры регрессии оказываются не интерпретируемыми. Насыщение модели линейными факторами не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, зато приводит к статистической не значимости уравнения регрессии. И хотя уравнение множественной регрессии позволит получить большое количество факторов, практически необходимости в этом нет, поэтому отбор факторов производится на основе качественного теоретико-экономического анализа. Отбор факторов обычно производится в 2 стадии. На первой выбираются факторы исходя из сущности проблем. На второй стадии на основе матрицы показателей корреляции определяется t- статистики Стьюдента для параметров уравнения регрессии. Это позволяет исключить из модели дублирующие факторы. Считается, что 2 переменные явно коллинеарные, т.е. зависимы, если коэффициент корреляции между ними больше или равен 0,7. 2 переменные дублируют друг друга, поэтому от одной из них необходимо избавиться. В этом случае предпочтение отдается переменной, для которой наблюдается связь с результатом в наименьшей степени. Наибольшие трудности в использовании множественной регрессии возникают при наличии мультиколлинеарности, когда более чем 2 фактора связаны между собой. Включают в модель мультиколлинеарности факторов т.к.: затрудняется интерпретация параметров (теряют смысл); оценки параметров не надежны и обнаруживают большие нестандартные ошибки. Для оценки мультиколлинеарности используется определитель матрицы парных коэффициентов корреляции между факторами. Например, уравнение множественной регрессии имеет вид:
y=a+b1x1+b2x2+b3x3+E.
если rxixi=1, означает что факторы не колленируют между собой. Если между факторами существует полная линейная зависимость, то detR=0. чем он ближе к нулю, тем сильнее мультиколлинеарность факторов и не надежнее уравнение регрессии. Самый простой способ устранения мультиколлинеарности состоит в исключении одного из факторов из модели. Другой подход связан с преобразованием факторов при котором снижается корреляция между ними. Чтобы учесть внутреннюю корреляцию факторов иногда переходят к совмещенным уравнениям.
Y=a+b1x1+b2x2+b3x3+b12x1x3+b23x2x3+E.
Подходы к отбору факторов на основе показателей корреляции различны, что приводит к построению уравнения множественной регрессии разного вида. Наибольшее распространение получили 3 подхода:
1. метод исключения (отсев факторов из полного его набора).
2. метод включения ( дополнительное введение факторов).
3. шаговый регрессионный анализ ( исключение ранее введенного фактора).
13. выбор формы уравнения регрессии
Как и в парной регрессии возможны различные виды: линейные и нелинейные.
Линейные уравнения множественной регрессии имеют вид: y=a+b1x1+b2x2+…+bpxp, где x1,x2,…,xp –факторы, а b1,b2,…,bp- параметры регрессии, b1,…,bp – коэффициенты чистой регрессии. Эти коэффициенты, стоящие перед переменными Х характеризуют средние изменения результативного признака с изменением соответствующего фактора при неизменных значениях др фактора.
Нелинейные: y=ax1b1x2b2….xpbp степенная множественной регрессии. Параметры bi – коэффициенты эластичности. Они показывают изменении результата с изменением соответствующего фактора на 1% при неизменности др. факторов. Такой вид уравнений множественной регрессии используется в производственных функциях, а также в исследовании спроса и предложения. Для построения множественной регрессии используется также функции:y=e в степени a+b1x1+b2x2+…+bpxp – экспонента.
Y=1\( a+b1x1+b2x2+…+bpxp) – обратная (гипербола).
Стандартные компьютерные программы имеют возможность перебирать возможные функции и выбрать из всех только ту, для которой остаточная дисперсия минимальна и ошибка аппроксимации тоже минимальна. Коэффициент детерминации должен быть приближен к 1. если исследователя не устраивает предполагаемый набор функций регрессии, то можно использовать любые др. функции, приводимые к линейным с помощью преобразования. Однако, чем сложнее функция, тем менее интерпретируемы ее параметры, поэтому использование номинальных моделей очень высокого порядка или сложных функций нежелательно.
14. оценка параметров уравнения множественной регрессии
параметры уравнения множественной регрессии как и для парной регрессии находятся с помощью МНК. При его применении строится система нормальных уравнений, решение которых позволяет получить оценки параметров для уравнения множественной регрессии. Для уравнения множественной регрессии линейного вида получается система нормальных уравнений:
в системе р+1 уравнение и р+1 неизвестная. Решение этой системы возможно методом Крамера. При нелинейной зависимости уравнение множественной регрессии необходимо привести к линейному виду, чтобы затем использовать МНК для нахождения. Например использовать метод линеаризации:
y=ax1b1x2b2….xpbp ; lny= ln(ax1b1x2b2….xpbp); lny= lna+b1lnx1+b2lnx2+…+bplnxp; Y=C+b1X1+b2X2+…+bpXp
15. частные уравнении множественной регрессии
частные линейные уравнения множественной регрессии имеют вид:
Если ввести новое обозначение, то получим
На основе частных уравнений регрессии определяются частные коэффициенты эластичности:
16. множественная корреляция
показатели множественной корреляции характеризуют тесноту связи, рассматриваемого набора фактора с исследуемым признаком, т.е. оценивает тесноту связи совместного влияния фактора на результат. Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции: