Учебное пособие: Особенности эконометрического метода
17. частная корреляция
частные индексы корреляции характеризуют тесноту связи исследуемого признака и одним из факторов при устранении влияния остальных факторов, включенных в модель. Эти показатели представляют собой отношение сокращения остаточной дисперсии за счет включения доп. Факторов. Если рассматриваемая регрессия с числом факторов Р, то возможны коэффициенты корреляции первого, второго и т.д. Р-1 порядков, т.е.
пример: действие влияния Х1 можно оценить при разных условиях независимого действия др. факторов: ryx1x2 при постоянном действии фактора Х2, ryx1x2x3 при постоянном действии факторов Х2 и Х3. формула в общем виде имеет вид:
18. предпосылки МНК
После построения уравнения множественной регрессии проводится проверка наличия у оценок (y=a+b1x1+b2x2+…+bpxp+E) тех свойств, которые предполагаются при МНК. Это связано с тем, что оценки параметров для уравнения регрессии должны отвечать определенным критериям, а именно: д.б. эффективными, несмещенными, состоятельными.
Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Оценка считается эффективной если она характеризуется наименьшей дисперсией. Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки.
Условия, необходимые для получения оценок удовлетворяет этим 3 критериям представляет собой предпосылки МНК:
1. случайный характер остатка.
2. нулевая средняя величина остатков, не зависящая от Xi.
3. гомоскедастичность – дисперсия каждого отклонения одинаково для всех факторов.
4. отсутствие автокорреляции Еi распределены независимо друг от друга.
5. остатки подчиняются нормативному закону.
Если все 5 предпосылок выполняются, то оценки, полученные МНК считаются хорошими. Если не выполняется хотя бы одна предпосылка, то следует корректировать модель.
1).прежде всего проверяется случайный характер остатков Еi. С этой целью строится график зависимости остатков Ei от теоретических значений результативного признака.
А) возможны следующие варианты, если на графике получена горизонтальная полоса, то остатки представляют собой случайные Величины и МНК оправдан, т.е. теоретические значения хорошо аппроксимируют фактические данные.
Б)
остатки неслучайны. В) остатки не имеют постоянной дисперсии.
Г) остатки носят систематический характер. В этом случае отрицательное значение Еi относится к низким значениям y^x, соответственно, положительное значение Ei относится к высоким значениям y^x.
В случаях 2,3,4 необходимо либо применять другую функцию, либо вводить дополнительную информации. А затем строить уравнение регрессии до тех пор, пока остатки не станут случайными величинами.
2) МНК относительно нулевой средней величины остатка означает, сумма разностей фактических и теоретических значений равна нулю . Это выполнимо для линейных моделей и моделей нелинейных относительно включенных переменных. Для выяснения того, что остатки соответственно второй предпосылки строиться график зависимости остатков от факторов включенных в регрессию.
Если на графике получается горизонтальная полоса, то остатки Еi не зависит от Xi. Если график показывает зависимость, то моде?