Учебное пособие: Сопротивление материалов
для первого участка:
Q > 0 и М возрастает от нуля до .
Q = const и M x
для второго участка:
Q < 0 и М убывает с до нуля.
Q = const и M также пропорционален х , т.е. изменяется по линейному закону.
Опасным в данном примере является сечение балки в центре пролета:
Третий характерный пример связан с использованием распределенной по длине балки нагрузки (рис.4). Следуя методике, принятой ранее, очевидно равенство опорных реакций:
,
а для искомого сечения (рис.4, б) выражения для внутренних усилий приобретают вид:
На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением балки будет центр пролета при . Действительно, исходя из свойства функции и производной при , внутренний изгибающий момент достигает экстремума. Для нахождения исходной координаты х0 (рис.3 в) в общем случае приравняем выражение поперечной силы к нулю. В итоге получим
После подстановки в выражение изгибающего момента получим:
Таким образом,
.
Необходимо отметить, что техника построения эпюр при изгибе наиболее трудно усваивается слушателями. Вам представляется возможность научиться "быстрому" построению эпюр на тесторе-тренажере, приведенном в ПРИЛОЖЕНИИ под грифом Т-4.
5. Понятие о напряжениях и деформациях
Ключевые слова : нормальное и касательное напряжения, линейная и угловая деформации, тензор напряжений.
Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Зафиксируем точку М в рассматриваемом сечении с единичным вектором нормали n . В окрестности этой точки выделим малую площадку F . Главный вектор внутренних сил, действующих на этой площадке, обозначим через P (рис. 1, а). При уменьшении размеров площадки соответственно уменьшаются главный вектор и главный момент внутренних сил, причем главный момент уменьшается в большей степени. В пределе при F 0 получим
Аналогичный предел для главного момента равен нулю. Введенный таким образом вектор рn называется вектором напряжений в точке . Этот вектор зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки F , характеризуемой вектором n . Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора n определяет напряженное состояние в этой точке.
В общем случае направление вектора напряжений рn не совпадает с направлением вектора нормали n . Проекция вектора рn на направление вектора n называется нормальным напряжением sn , а проекция на плоскость, проходящую через точку М и ортогональную вектору n, - касательным напряжением n (рис. 1 б).
Размерность напряжений равна отношению размерности силы к размерности площади. В международной системе единиц СИ напряжения измеряются в паскалях: 1 Па=1 Н/м2 .