1.      Из точки А проведены к окружности радиуса 4/3 касательная АВ и секущая АС, проходящая через центр окружности и пересекающая её в точках D и C. Найдите площадь треугольника АВС, если длина секущей Ас в 3 раза больше длин...

1.       Из точки А проведены к окружности радиуса 4/3 касательная АВ и секущая АС, проходящая через центр окружности и пересекающая её в точках D и C. Найдите площадь треугольника АВС, если длина секущей Ас в 3 раза больше длины касательной. 2.       [tex]30 x^{2} /(x^4+25)=x^2+2 \sqrt{5}x+8[/tex]
Гость
Ответ(ы) на вопрос:
Гость
Пусть касательная равна х, тогда секущая АС равна 3х, по свойству секущей и касательной с проведенные к окружности с одной точки x^2=AD*3x ; получаем AD=x/3 . Так как радиус перпендикулярен  касательной , тогда треугольник АВО  прямоугольный , найдем АО  ДО=(3x-x/3)/2 = 8x/6 ; AO=8x/6+x/3 =5x/3 ;  x^2+(4/3)^2=25x^2/9 x=1; то есть длина АС=3; AB=1 угол ВАO 16/9 = 1+(25/9)-2*(5/3)*cosa sina=4/5 тогда площадь равна  S=1*(5/3)*(4/5)/2 = 20/30=2/3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы