1. Приведенный квадратный трехчлен f(x) имеет 2 различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет 3 различных корня, а уравнение f(f(f(x))) = 0 — 7 различных корней? 2.Пусть AD — биссектриса треугольника...

1. Приведенный квадратный трехчлен f(x) имеет 2 различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет 3 различных корня, а уравнение f(f(f(x))) = 0 — 7 различных корней? 2.Пусть AD — биссектриса треугольника ABC, и прямая l касается окружностей, описанных около треугольников ADB и ADC в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD, DC и MN, касается прямой l. 3,Пусть AD — биссектриса треугольника ABC, и прямая l касается окружностей, описанных около треугольников ADB и ADC в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD, DC и MN, касается прямой l. ну как слабо а?
Гость
Ответ(ы) на вопрос:
Гость
По теореме Виета: -x1-x2=a;  x1*x2=b x1+(-x1-x2)=a+x1;  x1*x2-x1²=b; x1+(x2-x1)=-a-x1; x1*(x2-x1)=b-x1²;  Т.о. новое уравнение имеет 2 корня х1 и х2-х1, но если b=x1² и х1 != 0, то корень один.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы