1)Задача Ибн Сины. если число будучи разделено на 9, дает остаток 1 или 8, то квадрат этого числа, деленный на 9, дает остаток 1. Докажите.   2)Задача Пифагора. Докажите. что всякое нечетное натуральное число, кроме 1 , есть ра...

1)Задача Ибн Сины. если число будучи разделено на 9, дает остаток 1 или 8, то квадрат этого числа, деленный на 9, дает остаток 1. Докажите.   2)Задача Пифагора. Докажите. что всякое нечетное натуральное число, кроме 1 , есть разность квадратов двух последовательных натуральных чисел.   3)Задача Диофанта. Докажите, что приозведение двух чесел, каждое из которых есть сумма двух квадратов, само представляется двумя способами в виде суммы двух квадратов:  (a²+b²)^(c²+d²)=(a^c+b^d)²+(b^c-a^d)²; (a²+b²)^(c²+d²)=(a^c-b^d)²+(b^c+a^d)².   Если можно с решением пожалуйста каждую задачу, если не можете все три, то хотябы одну)
Гость
Ответ(ы) на вопрос:
Гость
2) Запишем нечетное число - 2n+1 Разность квадратов двух последовательных натуральных чисел: (n+1)2-n2 То есть, раскрыв скобки, n2+2n+1-n2=2n+1 ЧТД  
Не нашли ответ?
Ответить на вопрос
Похожие вопросы