2 окружности касаются внутренним образом в точке К,причем меньшая проходит через центр большей. Хорда МN большей окружности касается меньшей в точке С.Хорды КМ и КN пересекают меньшую окружность в точках А и В соответственно,а ...

2 окружности касаются внутренним образом в точке К,причем меньшая проходит через центр большей. Хорда МN большей окружности касается меньшей в точке С.Хорды КМ и КN пересекают меньшую окружность в точках А и В соответственно,а отрезки КС и АВ пересекаются в точке L.Найти МN,если LB:LА как 2:3,а радиус малой окр. равен корень из 23
Гость
Ответ(ы) на вопрос:
Гость
А вот это ничего задачка :) жаль, что в праздники. Прежде, чем начать, я выражаю благодарность Hrisula за предоставленный отличный рисунок к задаче. 1) Сразу надо понять, что AB II MN. Причем - еще до того, как используется, что MN - касательная к окружности (ABK) (я буду обозначать окружности в тексте тремя точками в скобках). В самом деле, в точке K у окружностей есть общая касательная. Пусть это прямая KP, где Р - точка пересечения касательных MN и KP (то есть P лежит на продолжении MN) ∠NKP = ∠NMK; (оба измеряются половиной дуги KN окружности (MNK)) ∠BAK = ∠BKP; ( оба измеряются половиной дуги BK окружности (ABK)); то есть ∠NMK = ∠BAK; что означает AB II MN. 2) Из этого следует подобие треугольников ABK и MNK. Но поскольку радиус описанной окружности у треугольника ABK в 2 раза меньше, то и стороны в 2 раза меньше, что означает, что AB - средняя линия треугольника MNK. Но это еще не всё :) - это еще и означает, что CK делится прямой AB пополам, то есть CL = LK; (Любой, кто знаком с гомотетией, эти два пункта может доказать моментально - тут просто гомотетия с центром в точке K и коэффициентом 2. Отсюда и параллельность, и средняя линия.) 3) Теперь самое время вспомнить, что MN - касательная. Обе касательные СP и KP к окружности (ABK) образуют одинаковые углы с хордой CK. То есть ∠NCK = ∠PKC; но ∠PKC = ∠NKP + ∠NKC; ∠PCK = ∠NMK +∠CKM; если еще раз вспомнить, что ∠NKP = ∠NMK; то ∠NKC = ∠CKM; получилось, что CK = биссектриса угла AKB; это означает, что AK/BK = AL/BL = 3/2; (разумеется, в подобном треугольнику ABK треугольнике MNK тоже такое же соотношение сторон) 4) Теперь надо "сложить" полученные условия для вписанного четырехугольника ACBK - что AL/BL = 3/2 = AK/BK; и CL = KL. Также AC = CВ, но это не понадобится (хотя в принципе и это можно было бы использовать). Главная задача - найти угол AKB. Полученных связей должно хватить. Для краткости и понятности формул я теперь обозначу γ = ∠AKB; a = BK; b = AK; l = KL = CL; Пара треугольников KLB и AKC; имеет равные углы, так как KL - биссектриса угла AKB; и ∠ABK = ∠ACK; так как это вписанные углы, опирающиеся на дугу AK; Поэтому KL/KB = KA/CK; или 2*l^2 = ab; Учитывая, что b = a*3/2; получается l = a*√3/2; (синус 60° тут возник случайно). Если записать площадь треугольника ABK, как ab*sin(γ)/2 = al*sin(γ/2)/2 + bl*sin(γ/2)/2; то l = 2ab*cos(γ/2)/(a + b); или, если подставить ранее найденные соотношения b = a*3/2; l = a*√3/2 a*√3/2 = 2a*(3a/2)*cos(γ/2)/(a + 3*a/2); после сокращений получается значение косинуса половины угла AKB, откуда можно найти синус всего угла. cos(γ/2) = 5√3/12; sin(γ/2) = √69/12; sin(γ) = 5√23/24; (угол получился близким к прямому, но все-таки меньше :) примерно 87,6°) 5) Теперь, когда известен синус угла MKN; остается только применить теорему синусов. Радиус окружности (MKN) равен 2√23; поэтому MN = 2*(2√23)*(5√23/24) = 5*23/6 = 115/6 = 19,1(6); ну вот как-то так. Проверяйте... (Между прочим, диаметр большей окружности 4√23 примерно равен 19,1833261)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы