340. Основанием призмы является трапеция. Доказать, что плоскость, проходящая через середины оснований трапеций, разбивает ее на две равновеликие призмы

340. Основанием призмы является трапеция. Доказать, что плоскость, проходящая через середины оснований трапеций, разбивает ее на две равновеликие призмы
Гость
Ответ(ы) на вопрос:
Гость
Объём призмы равен произведению площади основания на высоту. При разделении плоскостью, проходящей через середины сторон трапеции высоты получившихся призм одинаковы, и нужно показать, что линия пересечения плоскости с основанием делит его на две равные по площади фигуры. Это легко. Для основания: S трап = 0,5 (а + в) h Линия пересечения проходит через середины оснований, значит, она рассекает каждое основание на две равные части: 0,5а и 0,5а; 0,5в и 0,5в. получившиеся фигуры  - тоже трапеции и площади их равны: S лев = S прав = 0,5 (0,5а + 0,5в) h. Итак, площади оснований половинок призмы - одинаковы, а высота  - как была, так и осталась Н. Следовательно, и получившиеся призмы - равновелики., т.е. равны по объёму
Не нашли ответ?
Ответить на вопрос
Похожие вопросы