+70 баллов cos^2x-cosx-2 больше 0 и sin^2x-2sinx-3 меньше 0
+70 баллов
cos^2x-cosx-2>0 и sin^2x-2sinx-3<0
Ответ(ы) на вопрос:
Гость
1) в первом делаем замену
cosx=t
t^2-t-2>0
t1=-2 t2=1
дальше делаем интервалы (t+2)(t-1)>0 находим нули t=-2 t=1 знаки будут "+""-""+" тогда это будет : t=(-бесконечость ;-2)и(1; плюс несконечность)
возвращаемся к замене
cos x лежит в границах -1 до 1
тогда x не будет иметь корней т.к ни один промежуток не лежит в этих границах
2)делаем тоже самое
Гость
cos²x -cosx -2 > 0 ; * * * замена cosx =t ; |t|≤1 * * *
t² -t -2 >0 ;
(t+1)(t -2) >0 ;
+ - +
---- (-1) -----2 ------
t∈( -∞ ; -1) U (2 ; ∞) . ⇒ cosx ∈ ( -∞ ; -1) U (2 ; ∞) невозможно .
ответ: x ∈ ∅ .
-------
sin²x - 2sinx -3 < 0 ; замена sinx =t ; |t|≤1 * * *
t² -2t -3 < 0 ;
(t+1)(t -3) <0 ;
+ - +
---- (-1) -----3 ------
t∈( -1;3) ⇒ sinx ∈ ( -1; 3) учитывая что sinx ≤1 получается
sinx ∈ ( -1; 1] .
ответ: для всех x ≠ - π/2 +2πk , k∈Z.
-------
x ∈ R \ {. -π/2 +2πk , k∈Z }
Не нашли ответ?
Похожие вопросы