99 баллов. Полное решение задачи.

99 баллов. Полное решение задачи.
Гость
Ответ(ы) на вопрос:
Гость
1 Пусть r-радиус окружности ,вписанной в ΔABM, R-радиус окружности вписанной в ΔАВС.Тогда r=2S(ABM)/(AB+BM+AM и R=2S(ABC)/(AB+BC+AC) Предположим,что r=1/2*R⇒R=2r Тогда,т.к.ВМ-медиана ΔАВС,то S(ABC)=2S(ABM) (медиана делит треугольник на 2 равновеликих треугольника) и значит 2S(ABC)/(AB+BC+AC)=4S(ABM) Получаем  ВС+АС=ВМ+АМ. АМ=МС,АС=2МС и ВС+2МС=ВМ+МС Следовательно ВС+МС=ВМ,но такого не может быть исходя из неравенства треугольника. На основании этого делаем вывод,что радиус r не может быть меньше  радиуса R в два раза. 2 Обозначим р(АВМ) и р(СВМ)-полупериметры треугольников АВМ и СВМ. Тогда МР=р(АВМ)-АВ и МР=(17+МВ+АМ)/2 -17=8,5+(МВ+АМ)/2-17= =(МВ+МС)/2-8,5 И МК=р(СВМ)-ВС=(7+МВ+МС)/2-7=3,5+(МВ+МС)/2-7=(МВ+МС)/2-3,5 Отсюда РК=МК-МР=(МВ+МС)/2-3,5-(МВ+МС)/2+8,5=5 Ответ РК=5
Не нашли ответ?
Ответить на вопрос
Похожие вопросы