Алгебра 11 класс. Найдите критические точки функции f(x)=2x-√x. Какие из этих точек - точки максимума функции, а какие - точки минимума?
Алгебра 11 класс. Найдите критические точки функции f(x)=2x-√x. Какие из этих точек - точки максимума функции, а какие - точки минимума?
Ответ(ы) на вопрос:
Гость
Задана функция [latex]f(x)=2x- \sqrt{x} [/latex]
Область определения функции: [latex]D(f)=[0;+\infty)[/latex]
Найдем производную функции:
[latex]f'(x)=(2x- \sqrt{x} )'=2- \frac{1}{2 \sqrt{x} } [/latex]
Приравниваем функцию к нулю и находим критические точки
[latex]2-\frac{1}{2 \sqrt{x} }=0|\cdot 2 \sqrt{x} \\ 4 \sqrt{x} -1=0\\ x= \frac{1}{16} [/latex]
Критические точки [latex]x= \frac{1}{16}[/latex]
[0]___-___(1/16)___+_____
[latex]x=\frac{1}{16}[/latex] - Точка минимума, а точки максимума - нет.
Не нашли ответ?
Похожие вопросы