Человек стоит на башне высотой 10 м и бросает вверх под углом 60 градусов к горизонту камень со скоростью 20 м/с. Найти максимальную высоту камня и дальность полёта. Прошу с подробным объяснением.

Человек стоит на башне высотой 10 м и бросает вверх под углом 60 градусов к горизонту камень со скоростью 20 м/с. Найти максимальную высоту камня и дальность полёта. Прошу с подробным объяснением.
Гость
Ответ(ы) на вопрос:
Гость
изначально камень, находясь на высоте h и обладая начальной скоростью v0, обладает только потенциальной энергией mgh и кинетической (m v0²)/2 достигая максимальной высоты H, камень по-прежнему обладает потенциальной энергией mgH и кинетической (m v'²)/2. скорость v' в момент прохождения камнем высоты H равна горизонтальной компоненте скорости (вертикальная отсутствует), т.е. v' = v0 cosα запишем закон сохранения энергии: mgh + (m v0²)/2 = mgH + (m v0² cos²α)/2 H = h + (v0² sin²α)/(2g) - максимальная высота, которой достигнет камень. посчитаем: H = 10 + (400*0.75)/20 = 25 м дальность полета L равна L = v0 cosα t (движение вдоль горизонтальной оси является равномерным) время полета t будет складываться из времени движения t1 до высоты H и времени движения t2 спуска с нее: t = t1 + t2 рассмотрим изменение вертикальной компоненты скорости до высоты H: 0 = v0 sinα - gt1 t1 = (v0 sinα)/g рассмотрим изменение вертикальной компоненты скорости до h' = 0: - vy = - gt2 t2 = vy/g скорость vy определим из закона сохранения энергии: mgH + (m v0² cos²α)/2 = (m v²)/2 скорость v в момент падения будет находиться следующим способом: v² = vx² + vy² = v0² cos²α + vy². с учетом этого получаем: vy = √(2gH). тогда t2 = √((2H)/g) полное время полета: t = (20*0.866)/10 + sqrt(50/10) ≈ 4 c дальность полета: L = 10*4 = 40 м
Не нашли ответ?
Ответить на вопрос
Похожие вопросы