Чтобы выпилить из круглого бревна наиболее прочную балку с поперечным сечением в форме прямоугольника на практике поступают так: проводят диаметр АС круга, делят его на три равные части, через точки деления Т и К проводят перпе...

Чтобы выпилить из круглого бревна наиболее прочную балку с поперечным сечением в форме прямоугольника на практике поступают так: проводят диаметр АС круга, делят его на три равные части, через точки деления Т и К проводят перпендикуляры к диаметру до пересечения с окружностью в точках В и D. Вычислите меньшую сторону прямоугольника АВСD в сечении такой балки, выпиленной из бревна диаметром 30 см. Ответ округлите до целого числа сантиметров.
Гость
Ответ(ы) на вопрос:
Гость
Рисунок я привел. Диаметр 30 см, радиус 15 см. По теореме Пифагора a = TB = KD = √(OB^2 - OT^2) = √(15^2 - 5^2) = √200 = 10√2 Короткая сторона бруса x = AB = CD = √(AT^2 + TB^2) = √(10^2 + 200) = √300 = 10√3 Длинная сторона бруса y = BC = AD = √(CT^2 + TB^2) = √(20^2 + 200) = √600 = 10√6
Не нашли ответ?
Ответить на вопрос
Похожие вопросы