Дано: Треугольник ABC - равнобедренный. AB - биссектриса угла DBC. Доказать DB параллельно АC.

Дано: Треугольник ABC - равнобедренный. AB - биссектриса угла DBC. Доказать DB параллельно АC.
Гость
Ответ(ы) на вопрос:
Гость
Дано: треугольник АВС; AД - биссектриса AO = OД MO перпендикулярно AД Доказать: что AВ параллельно MД Доказательство: 1) Рассмотрим треугольники АОМ и ОМД. У них сторона МО - общая, АО = ОД по условию задачи, угол ДОМ = углу АОМ = 90 градусов так, как MO перпендикулярно AД. Следовательно треугольники АОМ = ОМД; 2) Тогда угол МДО = углу ОМА = углу ВАД так, как AД - биссектриса; 3) Углы МДО и АВД - накрест лежащие для прямых МД и АВ и секущей АД. Так, как угол МДО = углу ВАД, то прямые МД и АВ параллельны. Доказано.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы