Даны точки a(4;3) b(-2;0) и с(2;-3). написать уравнение перпендикуляра к прямой АВ, проходящего через точку С. Найти координаты точки пересечения этого перпендикуляра с прямой AB?
Даны точки a(4;3) b(-2;0) и с(2;-3). написать уравнение перпендикуляра к прямой АВ, проходящего через точку С. Найти координаты точки пересечения этого перпендикуляра с прямой AB?
Ответ(ы) на вопрос:
Уравнение прямой АВ: у=kx+b
Чтобы найти коэффициенты k и b подставим координаты точек A и B, получим систему уравнений:
х=4 у=3
3=4k+b (*)
x=-2 y=0
0=-2k+b (**)
Вычитаем из уравнения (*) уравнение (**):
3=6k ⇒ k= 1/2
Прямая, перпендикулярная прямой АВ имеет угловой коэффициент k=-2
Так как произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1)
у=-2х+b - уравнение прямой, перпендикулярной АВ
Чтобы найти b подставим координаты точки С
х=2 у=-3
-3=-2·2+b ⇒ b=-3+4=1
Ответ. у=-2х+1
Не нашли ответ?
Похожие вопросы