Доказать,что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна его основанию

Доказать,что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна его основанию
Гость
Ответ(ы) на вопрос:
Гость
Внешний угол  треуг-ка  равен сумме внутренних углов треугольника, не смежных с ним. Значит, внешний угол тр-ка равен сумме углов при основании.Сами углы при основании равнобедренного тр-ка равны.Биссектриса внешнего угла делит его на два равных угла, которые в свою очередь равны углам при основании.Получаем две прямы ( основание тр-ка и биссектриса внешнего угла) пересечены секущей (боковая сторона тр-ка), причём внутренние накрест лежащие углы равны, значит прямые параллельны.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы