Докажите, что биссектрисы острых острых углов прямоугольного треугольника пересекаются под углом 45 градусов.

Докажите, что биссектрисы острых острых углов прямоугольного треугольника пересекаются под углом 45 градусов.
Гость
Ответ(ы) на вопрос:
Гость
Пусть ABC - прямоугольный треугольник, угол C - прямой. Из вершин A и B проведены биссектрисы пересекающиеся в точке О. Биссектриса из A пересекает сторону BC в точке N, биссектриса из B сторону AC в точке M. Сумма острых углов прямоугольного треугольника равна 90 градусов. Значит, сумма углов, образованных биссектрисами, равна 90:2 = 45 градусов. Тогда в треугольнике AOB угол O равен 180-45 = 135 градусов. Углы BON и AOM равны 180-135 = 45 градусов, как смежные.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы