Из внешней точки к окружности проведены две касательные, и в фигуру, ограниченную этими касательными и дугой, заключенной между точками касания и содержащей 120 градусов, вписана вторая окружность. Найдите ее длину,если радиус ...

Из внешней точки к окружности проведены две касательные, и в фигуру, ограниченную этими касательными и дугой, заключенной между точками касания и содержащей 120 градусов, вписана вторая окружность. Найдите ее длину,если радиус первой окружности равен 18 см.
Гость
Ответ(ы) на вопрос:
Гость
внешняя точка - C, центр большой окружности - O пусть K - точка касания маленькой окружности и описанной в условии фигуры; ok ∩ mn = L проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B. OK ⊥ AB по св-у касательной OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno) таким образом ab || mn значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn =  = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними)) большая окружность - вневписанная для Δabc => cn = cm = полупериметру пусть сторона abc = a тогда cm = 1.5a ca / cm = 2 / 3 mn по теореме косинусов из Δmon = 18√3 ab = 2 mn / 3 = 12√3 = a осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3 S = p * r = a²√3 / 4 r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 =   12 * 3 / 6 = 6 Длина окружности с радиусом 6 = 2π * 6 = 12π Ответ: 12π
Не нашли ответ?
Ответить на вопрос
Похожие вопросы