Известны координаты вершин треугольника A(6;5) B(8;1) C(2:7). Найти ординату точки пересечения высоты (BH) с прмямой x=1

Известны координаты вершин треугольника A(6;5) B(8;1) C(2:7). Найти ординату точки пересечения высоты (BH) с прмямой x=1
Гость
Ответ(ы) на вопрос:
Гость
Для ВН нормальный вектор  [latex]\overline{n}=\overline{AC}=(-4,2)[/latex] Можно взять вектор, коллинеарный вектору АС, за нормальный вектор высоты ВН: [latex]\overline{n}=-\frac{1}{2}(-4,2)=(2,-1)[/latex] Уравнение прямой на плоскости через нормальный вектор: [latex]A(x-x_0)+B(y-y_0)=0\\\\2(x-8)-(y-1)=0\\\\2x-y-15=0[/latex] Точка пересечения: [latex] \left \{ {{2x-y-15=0} \atop {x=1}} \right. \; \to \; 2-y-15=0,\; y=-13\\\\Tochka\; \; M(1,-13)[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы