Катет прямоугольного треугольника равен 6. Радиус описанной около этого треугольника окружности равен 5. Найти второй его катет. С решением пожалуйста

Катет прямоугольного треугольника равен 6. Радиус описанной около этого треугольника окружности равен 5. Найти второй его катет. С решением пожалуйста
Гость
Ответ(ы) на вопрос:
Гость
Если радиус окружности, описанной около треугольника равна 5, то гипотенуза прямоугольного треугольника равна 10, так как вписанный треугольник опирающийся на диаметр окружности является прямоугольным треугольником. тогда по Теореме Пифагора другой катет х=sqrt(10 в квадрате - 6 в квадрате)=sqrt(100-36)=sqrt(64)=8 Ответ. 8
Гость
[latex]R= \frac{1}{2} \sqrt{ a^{2} + b^{2} } , 5= \frac{1}{2} \sqrt{ 6^{2}+ b^{2} } , 10=\sqrt{ 6^{2}+ b^{2} }, 100=36+ b^{2} , 100-36= b^{2} , b^{2} =64, b_{1} =8, b_{2}=-2 - не является решением задачи. Ответ: 8
Не нашли ответ?
Ответить на вопрос
Похожие вопросы