Каждую сторону выпуклого четырехугольника продолжили в обе стороны и на всех восьми продолжениях обозначили равны между собой отрезки. Оказалось, что 8 точек, которые были получены - внешние концы построенных отрезков - разные ...

Каждую сторону выпуклого четырехугольника продолжили в обе стороны и на всех восьми продолжениях обозначили равны между собой отрезки. Оказалось, что 8 точек, которые были получены - внешние концы построенных отрезков - разные и принадлежат одному кругу. Докажите, что начальный четырехугольник - квадрат.
Гость
Ответ(ы) на вопрос:
Гость
Если соединить концы равных отрезков, исходящих из одной вершины, то получится равнобедренный треугольник. Углы при его основании равны. Легко видеть, что у других аналогичных треугольников такие же углы - поскольку все эти углы вписанные, и можно для любого такого угла указать угол из другого треугольника, опирающийся на эту же дугу. Это означает, что равны все углы при вершинах. То есть у исходного четырехугольника равны все углы. Получилось, что этот четырехугольник - заведомо прямоугольник. Остается заметить, что в самом общем случае, если точка пересечения двух хорд отсекает на них пару равных отрезков, то эти хорды равны. Это, кстати, не такое уж и тривиальное утверждение. Оно легко доказывается, поскольку у двух окружностей может быть не более 2 общих точек, симметричных относительно линии центров.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы