M, n целые числа. Докажите, что mn (m+n) всегда являются четными числами.

M, n целые числа. Докажите, что mn (m+n) всегда являются четными числами.
Гость
Ответ(ы) на вопрос:
Гость
есть три варианта: m=2a, n=2b mn(m+n)=2a*2b*(2a+2b) - число делится на 2 (четное) m=2a, n=2b+1 mn(m+n)=2a*(2b+1)*(2a+2b+1) - число делится на 2 (четное) m=2a+1, n=2b+1 mn(m+n)=(2a+1)*(2b+1)*(2a+1+2b+1)= (2a+1)*(2b+1)*(2a+2b+2)=2(2a+1)*(2b+1)*(a+b+1) = число делится на 2 (четное)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы