МАВСД-- правильная четырехугольная пирамида. Точки О и Т середины ребер АД и ДС. То?

МАВСД-- правильная четырехугольная пирамида. Точки О и Т середины ребер АД и ДС. То??ка К делит ребро МВ в отношении 1:3. Сторона основания пирамиды равна 8 , а боковое ребро 12. А) постройте сечение пирамиды плоскостью ОТК б) докажите, что плоскость ТОК параллельна прямой МД . В) НАЙДИТЕ площадь сечения.
Гость
Ответ(ы) на вопрос:
Гость
А). Построение понятно из рисунка. б). АС=8√2, ОТ=4√2, ВН=(3/4)*BD=6√2. МР=√(144-32)=√112=4√7. ВМ/ВК=ВD/BH=4/3. Значит КН параллельна МD и равна (3/4)*MD=9. Если прямая параллельна прямой лежащей в плоскости, то она параллельна и самой плоскости. Что и требовалось доказать. в). Треугольник ВКН равнобедренный. FH=(1/2)*BH=3√2. Найдем ЕР. Т.к. КН||МD (доказано), из подобия треугольников КВН и МВD находим КН=9.  Но РН=НD, и тогда ЕН - средняя линия ∆ РМD, Е - середина МР, и ЕР=МР/2=2√7. Попутно ЕН=0,5*MD=6, КЕ=9-6=3. Тр-ки АMP и AQJ подобны (так как QJ параллельна МР), с коэффициентом QJ/MP или k=(2√7)/(4√7)=1/2. Найдем AQ=(1/2)*AM=6, и из подобия AMC и QMN найдем QN=(1/2)*АС=4√2. Тогда площадь сечения OQKNT равна сумме площадей треугольника QKN и параллелограмма (так как QN=ОТ и QN||ОТ) OQNT. Sqkn=(1/2)*QN*KE или Sqkn=(1/2)*4√2*3=6√2. Soqnt=OT*EH или Soqnt=4√2*6=24√2. Sqoknt=Sqkn+Soqnt или Sqoknt=6√2+24√2=30√2. Ответ:Sqoknt=30√2.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы