На основаниях АВ И СD трапеции ABCD взяты точки K и L . Пусть E точка пересечения отрезк

На основаниях АВ И СD трапеции ABCD взяты точки K и L . Пусть E точка пересечения отрезков AL и DK. F- точка пересечения отрезков DL CK . Доказать что сумма площадей треугольников треугольник ADE и треугольник BCF равна площади четырехугольника EKFL
Гость
Ответ(ы) на вопрос:
Гость
Смотри, площади треугольников: Scfb = 1/2 *CF*FB*sin(CFB) Slfk = 1/2 *LF*FK*sin(LFK) С учётом того, что треугольники CFL и KFB подобны (по трём углам), имеем CF/FK=FL/FB. Кроме того, очевидно, что угол CFB=LFK. С учётом вышесказанного, получаем: Scfb/Slfk = CF*FB/LF*FK = 1 Совершенно аналогично Sdea/Skel = 1 В итоге получаем: Scfb+Sdea = Skel+Slfk = Skelf Что и требовалось доказать.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы