Найдите двугранный угол при ребре основания правильной треугольной пирамиды, если угол между её боковыми ребрами равен фи.
Найдите двугранный угол при ребре основания правильной треугольной пирамиды, если угол между её боковыми ребрами равен фи.
Ответ(ы) на вопрос:
Гость
опустим высоту пирамиды из ее вершины на основание тк пирамида правьльная то она падает в точку пересечения медиан основания или бессектрис тк треугольник правильный опустим высоту на сторону основания то есть высоту треугольника в боковой грани из вершины пирамиды на сторону равностороннего треугольника.тогда угол между гранями будет являтся углом между oa и этой высотой где o-точка падения высоты пирамиды a -пересечение медианы со стороной пусть сторона основания равна a имеем длинна медианы или бессектрисы равна a*cos30=a*sqrt(3)/2 тк медианы делятся в отношении 2:1 ,то ao=a*sqrt(3)/6 тк треугольник боковой грани равнобедренный то опущенная высота в ней делит угол пополам тк она и бессектриса тогда из прямоугольного треугольника s-вершина пирамиды as=a/2tg(Ф/2) тк она еще и медиана тогда из прямоугольного треугольника soa находим искомый угол cos(a)=(a*sqrt(3)/6)/(a/2tg(ф/2))=sqrt(3)/3 * tg(ф/2)=tg(ф/2)/sqrt(3) a=arccos(tg(ф/2)/sqrt(3))
Не нашли ответ?
Похожие вопросы