Найдите наибольшее и наименьшее значение функции y=x^3-3x^2+3x+2 на промежутке [-1;5]

Найдите наибольшее и наименьшее значение функции y=x^3-3x^2+3x+2 на промежутке [-1;5]
Гость
Ответ(ы) на вопрос:
Гость
y=x³-3x²+3x+2 1. Находим производную функции   y'=3x²-6x+3 2. Приравниваем ее к нулю и решаем полученное уравнение   3x²-6x+3=0   x²-2x+1=0   x=1 3. Находим значение функции в найденном х, т.е. при х=1, а также значение в крайних точках промежутка, т.е. в х=-1 и х=5   у(1)=1³-3*1²+3*1+2=3   у(-1)=(-1)³-3*(-1)²+3*(-1)+2=-5   у(5)=5³-3*5²+3*5+2=125-75+15+2=67  Маскимальным явл. у(5)=67 Минимальным явл. у(-1)=3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы