Найдите площадь параллелограмма со сторонами 6 и 10 и углом 150 градусов

Найдите площадь параллелограмма со сторонами 6 и 10 и углом 150 градусов
Гость
Ответ(ы) на вопрос:
Гость
Для нахождения площади параллелограмма можно применить разные формулы.  1) S=a•b•sin α, где a  и b -стороны, α - угол между ними.  sin d150°=0,5 S=6•10•0,5=30 (ед. площади) 2) В параллелограмме сумма углов, прилежащих к одной стороне, равна 180°. (свойство углов при параллельных прямых и секущей).  Тогда острый угол параллелограмма равен 180°-150°=30° Пусть дан параллелограмм АВСД.  АВ=СД=6, ВС=АД=10 Тогда высота ВН, проведенная к АД, как катет прямоугольного треугольника АВН противолежит углу 30° и по свойству такого катета равна половине длины гипотенузы АВ.  ВН=6:2=3 S=a•h, где а - сторона, h- высота, проведенная к ней.  S=10•3=30 (ед. площади).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы