Найдите площадь ромба, если его периметр равен 42 см,а диагонали относятся как 5:12

Найдите площадь ромба, если его периметр равен 42 см,а диагонали относятся как 5:12
Гость
Ответ(ы) на вопрос:
Гость
так как у ромба все стороны равны, то каждая сторона равна 42/4=10,5 (см) ромб-параллелограмм, значит диагонали точкой пересечения делятся пополам и отношение их половин такое же, как и самих диагоналей: 5/12 Диагонали в ромбе пересекаются под прямым углом, значит диагонали разбивают ромб на 4 прямоугольных треугольника, Рассмотрим любой из них, так как отношение половин диагоналей 5/12, а сторона ромба равна 10,5, то по теореме Пифагора, приняв половину одной диагонали за 5х, а другой 12 х имеем 110,25=25х^2+144x^2 110,25=169x^2 10.5=13x x=21/26 отсюда половины диагоналей равны: 21*5/26=105/26 и 12*21/26=126/13 а сами диагонали равны соответственно 105*2/26=105/13 и 126*2/13=252/13 Так как площадь ромба равна половине произведения его диагоналей, то площадь равна=105*252/(13*13*2)=26460/338=13230/119
Не нашли ответ?
Ответить на вопрос
Похожие вопросы