Найдите сумму геометрической прогрессии если bn= (-1)^n*12/2^n+1     Ответ должен быть -2

Найдите сумму геометрической прогрессии если bn= (-1)^n*12/2^n+1     Ответ должен быть -2
Гость
Ответ(ы) на вопрос:
Гость
[latex]b_n=\left(-1\right)^n\cdot\frac{12}{2^n+1};\\ b_n=\left(-\frac12\right)^n\cdot\frac{12}{2};\\ b_n=\left(-\frac12\right)^n\cdot6;\\ b_1=\left(-\frac12\right)^1\cdot6=-\frac12\cdot6=-3;\\ b_1=-3;\\ b_n=(-1)^n\cdot\frac{12}{2^{n+1}};\\ b_{n-1}=(-1)^{n-1}\cdot\frac{12}{2^{n+1-1}}=-(-1)^n\cdot\frac{12}{2^n};\\ b_n=b_1\cdot q^{n-1};\\ b_{n-1}=b_1\cdot q^{n-1-1}=b_1\cdot q^{n-2};\\[/latex] [latex]\frac{b_n}{b_{n-1}}=\frac{b_1\cdot q^{n-1}}{b_1\cdot q^{n-2}}=q^{n-1-n+2}=q;\\ q=\frac{b_n}{b_{n-1}}=\frac{(-1)^n\frac{12}{2^{n+1}}}{-(-1)^n\frac{12}{2^n}}=-1\cdot12^{n-n-1}=\\ =-1\cdot2^{-1}=-\frac12;\\ b_1=-3;\\ \left|q\right|=\left|-\frac12\right|=\frac12<1;\\ S=b_1\cdot\frac{1}{1-q}=-3\cdot\frac{1}{1-(-\frac12)}=-3\cdot\frac{1}{1+\frac12}=\\ =-3\cdot\frac{1}{\frac32}=-3\cdot\frac23=-2;\\ S=-2 [/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы