Найти длину окружности вписанной в равнобокую трапецию с основаниями 4 см и 16 см

Найти длину окружности вписанной в равнобокую трапецию с основаниями 4 см и 16 см
Гость
Ответ(ы) на вопрос:
Гость
Радиус окружности, вписанной в равнобедренный трапецию, равен половине среднему геометрическому оснований, т.е. r = √(ab)/2, где а и b - основания трапеции. r = √(4•16)/2 = 4 см. Длина окружности l равна 2πr l = 2π•4см = 8π см (или ≈25,14 см). Ответ: l = 8π см.
Гость
Вариант решения. В четырехугольник можно вписать окружность только тогда, когда суммы его противоположных сторон равны. Трапеция - четырехугольник.  Тогда сумма боковых сторон равна 16+4=20 см, а каждая из них равна 10 см.  Опустив из тупых углов трапеции высоты, получим прямоугольник и два равных прямоугольных треугольника с гипотенузой 10 и одним из катетов на большем основании, равным (16-4):2=6. Высоты - вторые катеты- можно найти по т. Пифагора, они равны 8 см. Диаметр вписанной в трапецию окружности равен ее высоте.  Длина ее =2πr=π•d=8π см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы